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Abstract. We investigate groups in which maximal sub-
groups of even order are primary or biprimary. We also research
soluble groups with restriction on a number of prime devisors of some
proper subgroup orders. We give applications of received results to
cofactors of proper subgroups.

1. Introduction

All groups in this paper are finite.
The structure of a group depends to a large extent on the properties

of its maximal subgroups. This area of the group theory has a long history.
We mark out some papers of the current decade. V. S. Monakhov and
V. N. Tyutyanov proved that if all maximal subgroups of a group are
either simple or nilpotent, then a group is soluble and a Schmidt group
[4, Theorem 1]. If every maximal subgroup of a group is either simple
or supersoluble, then a group can be insoluble. The chief series of such
group is of the form

1 ⊆ K ⊆ G, |G : K| 6 2, K ≃ PSL(2, p)

for a fit prime p, [4, Theorem 2]. V. A. Belonogov [5] enumerated all
simple non-abelian groups whose every maximal subgroup is π-closed for
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some fixed set of primes π. Groups in which all maximal subgroups are
Hall subgroups were also investigated. V. M. Levchuk, A. G. Liharev and
V. N. Tyutyanov [6,7] ascertained that simple groups with complemented
maximal subgroups are isomorphic to PSL(2, 7), PSL(2, 11) or PSL(5, 2).
In these groups maximal subgroups are Hall subgroups. Later V. N. Tyu-
tyanov and T. V. Tihonenko [8] proved that the converse statement is
also true, i. e. simple groups with Hall maximal subgroups are confined to
three mentioned groups. V. S. Monakhov [9] described π-soluble groups
with Hall maximal subgroups. In [10], it was proved that the non-abelian
composition factors of insoluble groups with Hall maximal subgroups are
confined up to isomorphism to PSL(2, 7), PSL(2, 11) and PSL(5, 2). Thus
the problem of V. S. Monakhov [11, 17.92] was solved. N. V. Maslova and
D. O. Revin [12] received the description of groups in which every maximal
subgroup is a Hall subgroup. These results were further developed by
V. A. Vedernikov [13], who investigated the structure of groups with Hall
insoluble maximal subgroups.

In [14], the notion “wide subgroup” was offered, see also [15]. A
subgroup H of a group G is wide if π(H) = π(G). We use |π(G)| to
denote a number of different prime devisors of |G|. A group G is said to
be quasi-k-primary if G has no wide subgroups and k = maxM<·G |π(M)|.
Here M < ·G denotes that M is a maximal subgroup of a group G, by
π(G) we denote the set of all prime devisors of |G|. A quasi-1-primary
group is also called quasiprimary, quasi-2-primary group is also called
quasibiprimary [16]. It is clear that if every maximal subgroup of a group
is a Hall subgroup, then such group has no wide subgroups. In many
simple groups there are no wide subgroups. Simple groups containing wide
subgroups were enumerated in [17, 3.8]. In [18, Theorem 1], the possible
non-abelian composition factors of insoluble groups with wide subgroups
were described. Thus, it was satisfied the question of V. S. Monakhov [11,
11.64].

S. S. Levischenko [16] studied the structure of quasibiprimary groups.
A soluble quasibiprimary group can be represented as the semidirect
product P ⋋ M of its normal elementary abelian Sylow subgroup P by
quasiprimary maximal subgroup M [16, Theorem 3.1]. In an insoluble
quasibiprimary group G, the Frattini subgroup Φ(G) is primary [16,
Theorem 2.2], the quotient group G/Φ(G) is simple, and all such simple
groups are enumerated [16, Theorem 2.1].

In this paper we investigate groups in which maximal subgroups of
even order are primary or biprimary. In particular, we prove that if in an
insoluble group G with Φ(G) = 1 all maximal subgroups of even order
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are primary or biprimary, then every proper subgroup of G is primary or
biprimary. We also research soluble groups with restriction on a number
of prime devisors of some proper subgroup orders. We give an application
of received results to the cofactors of proper subgroups.

2. Preliminaries

We write H 6 G if H is a subgroup of a group G, H < G if H is
a proper subgroup of G, and H � G if H is a normal subgroup of G. If
|π(G)| = k, then a group G is called k-primary; if |π(G)| 6 k, then G is
said to be no more than k-primary. A group G is primary if |π(G)| = 1
and biprimary if |π(G)| = 2. If p ∈ π(G), then we say that a group G is a
pd-group.

If a number n divides a number m, then we write n | m, If a number
n does not divide a number m, then we write n ∤ m.

Let r be a prime. By Gr we denote a Sylow r-subgroup of a group G,
Gr′ denotes its r′-Hall subgroup. A group G is r-closed if Gr �G. A group
G is r-nilpotent if there is a r′-Hall subgroup Gr′ such that Gr′ � G. A
group G is r-decomposed if it is r-closed and r-nilpotent. The largest
normal soluble subgroup of a group G is called the soluble radical and
denoted by R(G). The Fitting subgroup and the Frattini subgroup are
denoted by F (G) and Φ(G), respectively.

All unexplained notations and terminology are standard. The reader
is referred to [2, 3] if necessary.

Lemma 1. [20] If all proper subgroups of an insoluble group G are soluble,
G is isomorphic to one of the following groups.

(1) PSL(3, 3).

(2) Sz(2p), where p is an odd prime.

(3) SL(2, 2p), where p is a prime.

(4) PSL(2, 3p), where p is an odd prime.

(5) PSL(2, p), where p is a prime with p > 5 and p2 + 1 ≡ 0 (mod 5).

We also need the following results.

Lemma 2. [1, Theorem 2.54] The group PSL(2, pm) contains only the
following subgroups.

(1) Elementary abelian p-groups of order p, p2, . . . , pm.
(2) Cyclic groups of order z, where z | pm±1

d , d = (2, pm − 1).

(3) Dihedral groups of order 2z, where z | pm±1

d , d = (2, pm − 1).
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(4) The alternating group A4 when p > 2 or p = 2 and m is an odd
number.

(5) The symmetric group S4 when p2m ≡ 1 (mod 16).
(6) The alternating group A5 when p = 5 or p2m ≡ 1 (mod 5).
(7) The semidirect product of an elementary abelian group of order pk by

a cyclic group of order t, where t | pk−1

d and t | pm−1, d = (2, pm−1).
(8) PSL(2, pk) where k | m.
(9) PGL(2, pk) when p is odd and 2k | m.

Lemma 3. [21, XI.3] The Suzuki group Sz(2p) contains only the following
maximal subgroups.

(1) The Frobenius group of order 22p · (2p − 1).
(2) The dihedral group of order 2 · (2p − 1).

(3) The Frobenius group 〈a〉 ⋋ 〈b〉, where |a| = 2p + 2
p+1

2 + 1, |b| = 4.

(4) The Frobenius group 〈a〉 ⋋ 〈b〉, where |a| = 2p − 2
p+1

2 + 1, |b| = 4.

Lemma 4. [16, Lemma 1.3] If each of three consecutive positive integers
is primary, then these are one of the following.

(1) 1, 2, 3.
(2) 2, 3, 4.
(3) 3, 4, 5.
(4) 7, 8, 9.

Lemma 5. Fix a positive integer k and prime p. Let N be a normal
subgroup of a pd-group G. If every pd-subgroup of G is no more than k-
primary, then every pd-subgroup of G/N is also no more than k-primary.

Proof. Let every pd-subgroup of a pd-group G be no more than k-primary.
If N contains a Sylow p-subgroup of G for some p ∈ π(G), then G/N does
not contain pd-subgroups. Let p | |G/N | and let H/N be a pd-subgroup
of G/N . Then H is a pd-subgroup of G and |π(H)| 6 k by the choice
of G. Consequently, |π(H/N)| 6 |π(H)| 6 k.

3. Insoluble groups with biprimary subgroups

of even order

Theorem 1. Let G be an insoluble group such that every maximal sub-
group of even order in G is no more than biprimary. Then Φ(G) is primary
and G/Φ(G) is isomorphic to one of the following groups.

(1) PSL(3, 3).
(2) Sz(2p), where p = 3 or p = 5.
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(3) SL(2, 2p), where p = 2 or p = 3.
(4) PSL(2, 3p), where odd prime p is such that 3p − 1 = 2 · qa for integer

a > 1 and prime q > 3, and 3p + 1 = 4 · rb for integer b > 1 and
prime r > 3, r 6= q.

(5) PSL(2, p), where prime p is such that p > 5, p2 ≡ 1 (mod 5) and
one of the following statements holds.
(5.1) p − 1 = 2 · 3β for integer β > 1, and p + 1 = 2a · qb for integers

a > 2, b > 0 (if b = 0, then a > 3) and prime q > 3.
(5.2) p−1 = 2·qβ for integer β > 1 and prime q > 3, and p+1 = 2a·3b

for integers a > 2 and b > 1.
(5.3) p − 1 = 2α for integer α > 2, and p + 1 = 2 · 3b for integer

b > 1.

Proof. Let G be an insoluble group such that every maximal subgroup
of even order in G is no more than biprimary. It is clear that |π(G)| > 3
and 2 | |π(G)|. In addition, every proper subgroup of G is soluble. Indeed,
let H < G. If 2 ∤ |H|, then H is soluble as a group of odd order. If 2 | |H|,
then by the choice of G, H is no more than biprimary and therefore
soluble.

Let G be a non-simple group.

(a) Every proper normal subgroup of G is primary.

Suppose that N is a proper normal subgroup of G such that |π(N)| > 2.

If N is of odd order, then we consider a subgroup H = G2 ⋌ N in G.
Assume that G = H. Then G is soluble, since N and G/N are soluble.
But this contradicts the choice of G. Let H < G. Since 2 | |H|, we have
|π(H)| 6 2 by the choice of G. But |π(H)| = |π(G2)| + |π(N)| > 3, the
contradiction.

Assume that N is of even order. Then by the choice of G, |π(N)| = 2.
Since |π(G)| > 3, there is p ∈ π(G) such that p ∤ |N |. Now, we can
consider a subgroup H = Gp ⋌N and prove that G is soluble similarly to
that described above. This contradiction proves that every proper normal
subgroup of G is primary. In particular, Φ(G) is primary.

(b) Φ(G) is a maximal normal subgroup of G.

Let N be a maximal normal subgroup of G containing Φ(G). By (a),
N is primary. Let M be a maximal subgroup of G. If G = MN , then G
is soluble. This contradiction implies that N 6 M Hence N 6 Φ(G) and
N = Φ(G). Thus, Φ(G) is a maximal normal subgroup of G and G/Φ(G)
is a simple group.

In view of Lemma 5, every subgroup of even order in G/Φ(G) is no
more than biprimary. Therefore we can assume without loss of generality
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that G is a simple group. Since every proper subgroup of G is soluble, it
implies that G is isomorphic to one of five groups from Lemma 1.

(1) G ≃ PSL(3, 3).

It is known [3,16] that PSL(3, 3) has no 3-primary subgroups.

(2) G ≃ Sz(2p), where p is an odd prime.

By Lemma 3, in G there are proper subgroups A and B such that
|A| = 22 · a and |B| = 22 · b, where

a = 2p + 2
p+1

2 + 1, b = 2p − 2
p+1

2 + 1.

Since subgroups A and B are of even orders, it follows that they are no
more than biprimary by the choice of G. Hence a and b are primary as
they are odd numbers. The product of these numbers

a · b = (2p + 1)2 − 2p+1 = 4p + 1 = 5(4p−1 − 4p−2 + . . . − 4 + 1)

is divisible by 5. Therefore a or b is a power of 5. Then 22p + 1 = 5α · qβ

with integer α > 1 and prime q.

Suppose that q = 5. Then both a and b is divisible by 5. Consequently,

a − b = 2 · 2
p+1

2 is divisible by 5, but this is impossible. Thus, q 6= 5.

If α = 1, then 22p + 1 = 5 · qβ . Since q 6= 5, we conclude that only one
of a or b is equal to 5. Hence p = 3, since a > 41 and b > 25 when p > 3.

Let α > 1. Then k = 4p−1 − 4p−2 + . . . − 4 + 1 is divisible by 5. Note
that

k = (1 − 4 + 42 − 43 + 44) + (−45 + 46 − 47 + 48 − 49) + . . . + l.

It is clear that either l equals 0 or a number of summands in l is divisible
by 5. On the other hand, k contains exactly p summands. Consequently,
5 | p and p = 5.

Now, we show that in the group Sz(2p) every maximal subgroup of
even order is no more than biprimary when p = 3 or p = 5. If p = 3, then
in view of Lemma 3, maximal subgroups of Sz(23) can have the following
orders.

|M1| = 26(23 − 1) = 26 · 7; |M2| = 2(23 − 1) = 2 · 7;

|M3| = (23 + 22 + 1) · 22 = 22 · 13; |M4| = (23 − 22 + 1) · 22 = 22 · 5.

Consequently, every maximal subgroup of Sz(23) is of even order and
biprimary. Similarly, all maximal subgroups of Sz(25) is also of even order
and biprimary.

(3) G ≃ SL(2, 2p) with prime p.
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In view of Lemma 2(3), G contains dihedral subgroups

D1 = A1 ⋋ B, D2 = A2 ⋋ B,

where |A1| = 2p − 1, |A2| = 2p + 1, |B| = 2. By the choice of G, D1 and
D2 are both no more than biprimary. Hence odd numbers 2p − 1 and
2p + 1 are prime powers. Thus, each of three consecutive numbers 2p − 1,
2p and 2p + 1 is primary. Hence p = 2 or p = 3 by Lemma 4.

Now, we show that in the group SL(2, 2p) every maximal subgroup of
even order is no more than biprimary when p = 2 or p = 3. By Lemma 2,
in PSL(2, 23) there are following subgroups.

(3.1) Elementary abelian 2-groups of orders 2, 22, 23.

(3.2) Cyclic groups of orders z, where z | 7 or z | 9.

(3.3) Dihedral groups of orders 2z, where z | 7 or z | 9.

(3.4) The semidirect product of an elementary group of order 2k by a
cyclic group of order t, where t | (2k − 1) and t | 7.

Elementary abelian subgroups are always primary. Since p = 3, it
follows that z | 7 or z | 9, and cyclic subgroups (3.2) are primary, dihedral
subgroups (3.3) are biprimary, subgroups (3.4) are no more than biprimary.
Thus, every proper subgroup of even order in PSL(2, 23) is no more than
biprimary. Similarly, we can prove that in SL(2, 22) all maximal subgroups
of even order are also no more than biprimary.

(4) G ≃ PSL(2, 3p) with odd prime p.

By Lemma 2(3), G contains dihedral subgroups

D1 = A1 ⋋ B, D2 = A2 ⋋ B,

where |A1| = 3p−1

2
, |A2| = 3p+1

2
, |B| = 2. By the choice of G, D1 and D2

are both no more than biprimary. Note that

|D1| = 2 ·
3p − 1

2
= 3p − 1 = 2(3p−1 + 3p−2 + . . . + 3 + 1) = 2n.

A number of summands in n is odd. It follows that n is also odd and so
n is primary. Hence

3p − 1 = 2 · n = 2 · qa

for prime q and integer a > 0. Since n is odd, we conclude that q is also
odd. In addition, 3 ∤ qa and q > 3 because 3 ∤ (3p − 1).

In a similar way, using D2, we deduce that

3p + 1 = 4 · rb
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for prime r > 3 and integer b > 1.
Note that

4 · rb = 3p + 1 = (3p − 1) + 2 = 2 · qa + 2 = 2(qa + 1),

2 · rb − qa = 1.

Consequently, r 6= q.
Now, we can prove that every maximal subgroup of even order in

PSL(2, 3p) is no more than biprimary when odd prime p satisfies the
obtained relations similarly to the proof in (3).

(5) G ≃ PSL(2, p) with prime p such that p > 5 and p2 ≡ 1 (mod 5).
In view of Lemma 2(3), G contains dihedral subgroups

D1 = A1 ⋋ B, D2 = A2 ⋋ B,

where |A1| = p−1

2
, |A2| = p+1

2
, |B| = 2. By the choice of G, D1 and D2

are both no more than biprimary. Therefore both p − 1 and p + 1 is also
no more than biprimary. Note that p−1, p and p+1 are three consecutive
integers, and p > 5. Hence only one of p − 1 and p + 1 is divisible by 3,
and only one of them is divisible by 4 as they are two two consecutive
even integers.

Suppose that 4 | (p − 1). By Lemma 2(6), G contains a subgroup H
such that |H| = p · p−1

2
is an even positive integer. By the choice of G, H

is no more than biprimary. Since p−1

2
is even with odd prime p, we obtain

that p − 1 = 2α for integer α > 2. Further, 4 ∤ (p + 1) and 3 | (p + 1),
since 4 | (p − 1) and 3 ∤ (p − 1). Hence p + 1 = 2 · 3b for integer b > 1.

In a similar way, assuming 4 ∤ (p − 1), we get relations (5.1) and (5.2).
Now, we can prove similarly to the proof in (3) that every maximal

subgroup of even order in PSL(2, p) is no more than biprimary when odd
prime p satisfies the obtained relations.

Theorem 1 is proved.

Corollary 1. If in an insoluble group G every proper subgroup of even
order is no more than biprimary, then the quotient group G/Φ(G) is
quasibiprimary.

Proof. The group G/Φ(G) is isomorphic to one of the groups from Theo-
rem 1, each of which is quasibiprimary [16, Theorem 2.1].

Corollary 2. Let G be an insoluble group with Φ(G) = 1. If every
maximal subgroup of even order in G is primary or biprimary, then all
proper subgroups of G are primary or biprimary.
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Proof. In view of Corollary 1, G is quasibiprimary, therefore every proper
subgroup of G is no more than biprimary.

4. Soluble groups with a limited number of divisors

of the subgroup orders

In the previous paragraph, we investigate insoluble groups in which
every maximal 2d-subgroup is primary or biprimary. Now, we study soluble
pd-groups all of whose maximal pd-subgroups are no more than k-primary
for a fixed positive integer k. In particular, when p = k = 2, we get the
full description of soluble groups with primary of biprimary maximal
subgroups of even order.

Lemma 6. If a group G has no wide pd-subgroups for some p ∈ π(G),
then every proper subgroup of G is not wide.

Proof. Let M be a proper subgroup of G. If p ∈ π(M), then |π(M)| <
|π(G)| by the choice of G. Suppose that p /∈ π(M). Then

π(M) ⊆ π(G) \ {p}, |π(M)| 6 |π(G)| − 1.

Thus, G has no wide maximal subgroups and so every proper subgroup
of G is not wide.

A group is called a Schmidt group if it is non-nilpotent but all its
proper subgroups are nilpotent. In [19], the reader can find properties of
Schmidt groups and their applications in the theory of groups and their
classes. Taking into account the behaviour of Schmidt groups, it can be
easily deduced

Lemma 7. Quasiprimary groups are exhausted by the following groups.

(1) Cyclic groups of order pq, where p and q are different primes.

(2) Non-nilpotent groups of order paq with a minimal normal subgroup
of order pa, where p and q are different primes and a is the least positive
integer such that q divides pa − 1.

Let us note that further k is a fixed positive integer and p is a prime.

Theorem 2. In a soluble pd-group G every maximal pd-subgroup is no
more than k-primary if and only if either G is no more than k-primary
or G = N ⋋ M , where N is a minimal normal and Sylow q-subgroup for
some q ∈ π(G), M is a quasi-(k − 1)-primary maximal subgroup.
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Proof. Suppose that every maximal pd-subgroup of a soluble pd-group G
is no more than k-primary for some p ∈ π(G) and |π(G)| > k.

(1) |π(G)| = k + 1.
Since G is soluble, its maximal subgroups have primary indices and

for every r ∈ π(G) there is a subgroup H such that |G : H| = ra, a ∈ N.
In particular, there is a maximal pd-subgroup M such that |G : M | = ra,
r 6= p, a ∈ N. By the hypothesis, |π(M)| 6 k. Since |G| = |M | · |G : M |,
we get |π(G)| = k + 1.

(2) G has no wide subgroups.
If H is a proper pd-subgroup of G, then by the choice of G, we have

|π(H)| 6 k < k + 1 = |π(G)|,

that is, every pd-subgroup of G is not wide. In view of Lemma 6, G has
no wide subgroups.

(3) Every normal subgroup of G is a Hall subgroup.
Let K be a proper normal subgroup of G, τ = π(G) \ π(K). Assume

that K is not a Hall subgroup of G. By (2), we obtain that |π(K)| < |π(G)|
and τ 6= ∅. As G is a soluble group, there is a τ -Hall subgroup M in G.
Now,

(|M |, |K|) = 1, M ∩ K = 1, KM = K ⋋ M < G.

Since
π(K ⋋ M) = π(K) ∪ π(M) = π(K) ∪ τ = π(G),

it follows that K ⋋ M is a wide subgroup of G. This contradicts (2).
Therefore the assumption is false and K is a Hall subgroup of G.

(4) The completion of the proof of the necessity.
Let N be a minimal normal subgroup of G. In view of (3), N is a

Sylow q-subgroup of G for some q ∈ π(G). As G is soluble, G contains a
maximal subgroup M such that |G : M | = qa, a ∈ N and G = N ⋋ M .
By (1), M is k-primary. Suppose that M contains a wide subgroup M1.
Then in G there is a wide subgroup H = N ⋋ M1, since

|π(H)| = |π(N)| + |π(M1)| = 1 + |π(M)| = 1 + k = |π(G)|.

But this contradicts (2). Consequently, every proper subgroup of M is no
more than (k − 1)-primary, and so M is a quasi-(k − 1)-primary.

Thus, we have finished the proof of the necessity.
Now, we prove the sufficiency. If a group G is no more than k-primary,

then its every subgroup is no more than k-primary. Suppose that a
soluble group G is of the form G = N ⋋M , where N is a minimal normal
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and Sylow q-subgroup for some q ∈ π(G), M is a quasi-(k − 1)-primary
maximal subgroup. Then

|π(M)| = k, |π(G)| = |π(N ⋋ M)| = |π(N)| + |π(M)| = 1 + k.

Show that every maximal pd-subgroup H of G is no more than k-primary.
If N * H, then

G = NH, N ∩ H = 1, H ≃ M, |π(H)| = |π(M)| = k,

and H is k-primary. Let N ⊆ H. Then H = N ⋋ (H ∩ M) by Dedekind
identity. Since every proper subgroup of M is no more than (k − 1)-
primary, it implies |π(H ∩ M)| 6 k − 1. Hence H = N ⋋ (H ∩ M) is no
more than k-primary.

Theorem 2 is proved.

Assuming k = 2 in Theorem 2, we obtain

Corollary 3. Every maximal pd-subgroup of a soluble pd-group G is no
more than biprimary if and only if either G is no more than biprimary
or G = N ⋋ M , where N is a minimal normal and Sylow q-subgroup for
some q ∈ π(G), M is a quasiprimary maximal subgroup.

Note that the structure of quasiprimary groups is given in Lemma 7.
Applying Theorem 1 and Corollary 3 with p = 2, we get

Corollary 4. Let every maximal subgroup of even order in a group G
be primary or biprimary. If G is insoluble, then Φ(G) is primary and
G/Φ(G) ∈ Ω. If G is soluble, then G is of odd order, or G is no more
than biprimary, or G = N ⋋M , where N is a minimal normal and Sylow
q-subgroup for some q ∈ π(G), M is a quasiprimary maximal subgroup.

In what follows Ω denotes the set of simple groups from Theorem 1.

Corollary 5. [14, Theorem 1] A soluble group G is quasi-k-primary
if and only if G = N ⋋ M , where N is a minimal normal and Sylow
p-subgroup for some p ∈ π(G), M is a quasi-(k − 1)-primary maximal
subgroup.

Proof. Let G be a soluble quasi-k-primary group. Then G has no wide
subgroups and |π(H)| 6 k for every maximal subgroup H. Hence |π(G)| >
k + 1. By Theorem 2, G is of the form G = N ⋋M , where N is a minimal
normal and Sylow p-subgroup for some p ∈ π(G), M is a quasi-(k − 1)-
primary maximal subgroup.



I . Sokhor 323

Conversely, let a soluble group G be of the form G = N ⋋ M , where
N is a minimal normal and Sylow p-subgroup for some p ∈ π(G), M is a
quasi-(k − 1)-primary maximal subgroup. Then every proper subgroup in
M is no more than (k − 1)-primary. Since M is soluble, it implies that
every maximal subgroup of M is of prime index. Hence M is k-primary
and |π(G)| = |π(N)| + |π(M)| = k + 1. In view of Theorem 2, every
qd-subgroup H of G is no more than k-primary for some q ∈ π(G), and
we have

|π(H)| 6 k < k + 1 = |π(G)|,

that is, H is not wide. By Lemma 6, G has no wide subgroups, and so G
is quasi-k-primary.

Assuming k = 2 in Corollary 5, we obtain the result of S. S. Lewis-
chenko.

Corollary 6. ([16, Theorem 3.1]) A soluble quasibiprimary group G can
be represented as the semidirect product P ⋋ M of its elementary abelian
Sylow subgroup P and quasiprimary maximal subgroup M .

5. On applications to cofactors

The cofactor cofGH of a subgroup H in a group G is the quotient
group H/HG [22]. Here HG =

⋂
x∈G x−1Hx is the core of H in G, that

is, the largest normal subgroup of G contained in H.
The structure of a group essentially depends on the properties of

the subgroup cofactors. Y. G. Berkovich [23] studied groups in which
the non-nilpotent cofactors of maximal subgroups are soluble and have
nilpotent proper normal subgroups. It was proved either such groups are
soluble or the quotient group by the soluble radical is the direct product
of the simple groups SL(2, 2pi), where 2pi − 1 are pairwise different simple
Mersenne primes.

J. Dixon, J. Poland and A. Remtula [24] ascertained that groups with
the p-nilpotent cofactors of maximal subgroups are p-soluble when p > 2.
If p = 2, then the similar statement is not true and the insoluble group
PGL(2, 7) is a counterexample.

S. M. Evtuhova and V. S. Monakhov [25] investigated groups with
the supersoluble cofactors of maximal subgroups. In such groups, the
non-abelian composition factors are isomorphic to PSL(2, p) with prime p
such that p ≡ ±1 (mod 8). If a group with mentioned cofactor properties
is soluble, then its nilpotent length is no more than 3 and the p-length
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is no more than 2 for all primes p. In other paper [26], these authors
researched the structure of groups in which the cofactors of maximal
subgroups are of squarefree orders.

I. V. Lemeshev and V. S. Monakhov [27] studied groups with
π-decomposable cofactors of maximal subgroups. In particular, if such
group has a nilpotent π-Hall subgroup, then the quotient group by the Fit-
ting subgroup is π-decomposable. This implies groups with the nilpotent
cofactors of maximal subgroups are metanilpotent.

L. P. Avdashkoba and S. F. Kamornikov [28] investigated a class of a
soluble groups in which the cofactors of all maximal subgroups belongs to
some class of groups X. They considered the cases when X is a homomorph,
a Schunck class or a formation. The proof methods of these authors are
based on the construction of a local Schunck class defined by a constant
group function.

In a number of papers [29]–[30], groups with restrictions on the cofac-
tors of non-maximal subgroups were investigated.

Some authors studied the inverse problem: under what conditions
on a subgroup H of a group G its cofactor belongs to the given class of
groups F. It is known, for example, that if either H permutes with all
Sylow subgroups of G [31] or H is a modular element (in the sense of
Kurosh) of the lattice of all subgroups of G [32, Theorem 5.2.3], then
cofGH is nilpotent, and it is not necessity abelian even if G is a p-group
for a prime p and H permutes with all subgroups of G [33]. In connection
with these results, see also the paper of A. N. Skiba [34]).

We use the following cofactor properties.

Lemma 8. [27, Lemma 1] (1) If K 6 H 6 G, then KG 6 KH .
(2) If N 6 H 6 G and N �G, then N 6 HG and (H/N)G/N = HG/N .
(3) If N � G and H 6 G, then (HG)N 6 (HN)G.
(4) If N 6 H 6 G and N � G, then cofG/N H/N ≃ cofGH.

We also need the following results.

Lemma 9. [35, Theorem 2] Let G be a non-p-nilpotent group. If G
contains a p-decomposed maximal subgroup M , then either Mp or Mp′ is
normal in G.

Lemma 10. A nilpotent maximal subgroup of an insoluble group with
the trivial soluble radical is a Sylow 2-subgroup.

Proof. Let G be an insoluble group, R(G) = 1, and M be a nilpotent
maximal subgroup of G. If M is of odd order, then G is soluble [3, IV.7.4],
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the contradiction. Let 2 | |M |. Then M = M2 × M2′ . Suppose that
M2 < G2. Then M2 < NG2

(M2) 6 NG(M2). On the other hand,
M = NM (M2) 6 NG(M2) 6 G. Consequently, NG(M2) = G and
M2 6 R(G) = 1, the contradiction. Hence M2 is a Sylow 2-subgroup
of G and M2 is not normal in G. By Lemma 9, M2′ is normal in G and
M2′ = 1, since R(G) = 1. Thus, M = M2 is a Sylow 2-subgroup of G.

Lemma 11. [19, Theorem 2.4] In a non-2-closed group there is a 2-
nilpotent Schmidt 2d-subgroup.

Lemma 12. If G is a group, then F (R(G)) = F (G).

Proof. Since F (R(G)) is a characteristic subgroup in R(G), then
F (R(G)) � G and F (R(G)) ⊆ F (G). On the other hand, F (G) ⊆ R(G)
and so F (G) ⊆ F (R(G)). Thus, F (R(G)) = F (G).

Theorem 3. Let F be a formation. If the cofactor of every proper pd-
subgroup of a soluble pd-group G belongs to F or is no more than k-primary,
then G/F (G) ∈ F, or |π(G/F (G))| 6 k, or G is p-closed.

Proof. Let N be a normal subgroup of a soluble pd-group G and H/N be
a proper pd-subgroup of G/N . Then H is a proper pd-subgroup of G and,
by the hypothesis, cofGH ∈ F or |π(cofGH)| 6 k. In view of Lemma 8,
we have cofGH ≃ cofG/N H/N , and so cofG/N H/N ∈ F or

|π(cofG/N H/N)| = |π(cofGH)| 6 k.

Consequently, the hypotheses of the theorem are inherited by all quotients
of G.

Suppose that Φ(G) = 1. Then G = F (G) ⋋ H [1, 4.23]. Since G is
soluble, we have

HG 6 CG(F (G)) 6 F (G), HG = 1.

If H is a pd-subgroup, then H ∈ F or |π(H)| 6 k by the hypotheses. Let
H ∈ F. Then G/F (G) ∈ F. If |π(H)| 6 k, then

|π(G/F (G))| = |π(H)| 6 k.

If p ∤ |H|, then F (G) contains a Sylow p-subgroup of G and G is p-closed.
Thus, the theorem is true when Φ(G) = 1.

Assume that Φ(G) 6= 1. We apply induction on the order of G. Since
G is soluble, we have F (G/Φ(G)) = F (G)/Φ(G). Consequently,

(G/Φ(G))/F (G/Φ(G)) = (G/Φ(G))/(F (G)/Φ(G)) ≃ G/F (G). (1)
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By induction G/Φ(G) is p-closed, or (G/Φ(G))/F (G/Φ(G)) ∈ F, or

|π((G/Φ(G))/(F (G/Φ(G)))| 6 k.

If G/Φ(G) is p-closed, then G is also p-closed. In two other cases, (1)
implies that either G/F (G) ∈ F or |π(G/F (G)| 6 k.

Theorem 3 is proved.

The following corollaries can be easily obtained.

Corollary 7. Let F be a formation. If in a soluble non-p-closed group G
the cofactor of every proper pd-subgroup belongs to F or is no more than
k-primary, then G/F (G) ∈ F or |π(G/F (G))| 6 k.

Corollary 8. Let F be a formation. If in a soluble group G the cofactor
of every proper subgroup belongs to F or is no more than k-primary, then
G/F (G) ∈ F or |π(G/F (G))| 6 k.

Corollary 9. [24, Proposition 7] Let F be a formation. If in a so-
luble group G the cofactor of every proper subgroup belongs to F, then
G/F (G) ∈ F.

Assuming F = N in Theorem 3, we obtain

Corollary 10. If every proper subgroup of a soluble group G either is
nilpotent or has the no more than k-primary cofactor, then either G is
metanilpotent or |π(G/F (G))| 6 k.

Corollary 11. If the cofactor of every proper subgroup of a soluble
group G is nilpotent, then G is metanilpotent.

Corollary 12. If the cofactor of every proper subgroup of a soluble
group G is no more than k-primary, then |π(G/F (G))| 6 k.

Theorem 4. If in a group G the cofactors of non-nilpotent subgroups of
even order are primary or biprimary, then R(G) is 2-closed, or R(G) is
metanilpotent, or |π(R(G)/F (G))| 6 2, and G/R(G) is isomorphic to a
subgroup of the automorphism group Aut(H/R(G)), where H/R(G) is a
normal subgroup of G/R(G) and H/R(G) ∈ Ω.

Proof. If G is a soluble group, then applying Corollary 7 in assuming
p = 2 and F = N, we have G = R(G) is 2-closed, in particular, G is of odd
order, or G is metanilpotent, or |π(R(G)/F (G))| 6 2, and the theorem is
true. Further, we can assume that G is insoluble.
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Suppose that G is a simple group and M is a maximal subgroup of
even order in G. If M is nilpotent, then by Lemma 10, M is primary. If M
is not nilpotent, then by the hypothesis, M is primary or biprimary. Thus,
in G every maximal subgroup of even order is no more than biprimary.
In view of Theorem 1, G ∈ Ω.

Let G be a non-simple group and R(G) = 1. Choose a minimal normal
subgroup N in G. It is clear that N is a proper subgroup of G and can
be represented as the direct product of simple non-abelian isomorphic
subgroups

N = N1 × N2 × . . . × Nt, t > 1.

Since N1 is a simple non-abelian subgroup, then |π(N1)| > 2 and N1 is a
non-nilpotent subgroup of even order. By the hypothesis, |π(cofGN1)| 6 2.
Hence N = N1 = (N1)G is a simple non-abelian subgroup of G. Let H be a
maximal subgroup of even order in N . If H is nilpotent, then by Lemma 10,
H is primary. Suppose that H is non-nilpotent and |π(H)| > 2. Then
|π(cofGH)| 6 2, HG 6= 1 and HG ⊆ N . But N is a simple non-abelian
subgroup of G, the contradiction. Thus, in N all maximal subgroup of
even order are primary or biprimary. By Theorem 1, N ∈ Ω.

Assume that CG(N) 6= 1. Then CG(N)N = CG(N) × N and CG(N)
is insoluble. Choose in CG(N) a minimal normal subgroup K of G. As
we prove above, K is a simple non-abelian group. Consider the subgroup
KN = K × N . By Lemma 11, K contains a 2-nipotent Schmidt 2d-
subgroup S. Since |π(S)| = 2 and |π(N)| > 2, there is a prime q ∈
π(N) \ π(S). Let Nq be a Sylow q-subgroup of N . Then in K × N there is
a soluble 3-primary subgroup A = S×Nq of even order. By the hypothesis,
|π(cofGA)| 6 2. Hence

1 6= (A)G ⊆ R(G) = 1,

the contradiction. Consequently, the assumption is false, CG(N) = 1 and
G is isomorphic to a subgroup of the automorphism group Aut(N).

Let now R(G) 6= 1. Since R(G/R(G)) = 1, then as we prove
above, G/R(G) is isomorphic to a subgroup of the automorphism
group Aut(H/R(G)), where H/R(G) is a normal subgroup of G/R(G)
and H/R(G) ∈ Ω. In addition, by Theorem 3, R(G) is 2-closed, or
R(G) is metanilpotent, or |π(R(G)/F (R(G)))| 6 2. By Lemma 12,
|π(R(G)/F (G))| = |π(R(G)/F (R(G)))| 6 2.

Theorem 4 is proved.
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Corollary 13. If all proper subgroups of an insoluble group G have
primary or biprimary cofactors, then either R(G) is metanilpotent or
|π(R(G)/F (G))| 6 2 and G/R(G) is isomorphic to a subgroup of the au-
tomorphism group Aut(H/R(G)), where H/R(G) is a subgroup of G/R(G)
and H/R(G) ∈ Ω.

Proof. Suppose that all proper subgroups of an insoluble group G have pri-
mary or biprimary cofactors. Then by Theorem 4, G/R(G) is isomorphic
to a subgroup of the automorphism group Aut(H/R(G)), where H/R(G)
is a subgroup of G/R(G) and H/R(G) ∈ Ω. In view of Corollary 12 and
Lemma 12, we have |π(R(G)/F (R(G)))| 6 2.

Corollary 13 replenishes the list of groups from Theorem 2 [30].
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