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Abstract. Phantom homology arises in tight closure theory
due to small non-exactness when ‘kernel’ is not equal to ‘image’ but
‘kernel’ is in the tight closure of the ‘image’. In this paper we study
a typical flat extension, which we call *-flat extension, such that
upon tensoring which preserves phantom homology. Along with
other properties, we observe that *-flat extension preserves ghost
regular sequence, which is a typical ‘tight closure’ generalization
of regular sequence. We also show that in some situations, under
*-flat extension, test ideal of the *-flat algebra is the expansion of
the test ideal of the base ring.

1. Introduction

Throughout this paper all rings are commutative Noetherian rings of
positive prime characteristic p > 0 and all modules are finitely generated.
Theory of tight closure was developed by M. Hochster and C. Huneke
for almost thirty years back and here we explore a typical non-exactness
which arises in this theory. For a very good introduction we refer to [5]
and [8]. For a general reference we refer to the excellent books [2, 9, 10].

In tight closure theory, we observe a typical non-exactness in a sequence
of modules and maps where non-exactness is not very large. For M ′ g

→

M
f
→ M ′′, the non-exactness is of this sort : im g ⊂ ker f ⊂ (im g)∗

M

where (im g)∗
M is the tight closure of im g in M . Here we can say that the

sequence is exact at M up to a tight closure. This notion of non-exactness
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was introduced in [5] in context to define phantom homology and we call
such a non-exactness a phantom exactness at M . In the case of chain
complex of modules, the above situation can be depicted as follows: For a
complex (C., d.) over the Noetherian ring R, if ker di ⊂ (im di+1)∗

Ci
then

we say that the i-th homology group Hi(C.) is phantom and it is inside
0∗

Ci/im di
.

In this paper, we introduce a variant of phantom exactness, call it

*-exactness where for M ′ g
→ M

f
→ M ′′ we have im g ⊂ ker f = (im g)∗

M . In
section 2, we introduce a flat ring extension which we call *-flat extension,
which upon tensoring preserves *-exactness as well as phantom exactness
i.e phantom homology. It is a well-known fact that flat extension preserves
regular sequence. Observe the definition of a ghost regular sequence [3],
which is a typical ‘tight closure’ generalization of regular sequence. In
the similar way of flat extension, here we observe that *-flat extension
preserves ghost regular sequence. We discuss few properties of *-flat
extension and important results are given in Proposition 2.3 and its
corollary, Proposition 2.4 and Theorem 2.6. In section 3, we study the
behaviour of test ideal under *-flat extension. It comes out that with some
conditions on the rings, test ideal of the *-flat algebra is the expansion of
the test ideal of the base ring, see Theorem 3.4 and its corollaries. This
result is also comparable with that of Theorem 7.36 of [6], see Remark 3D.

2. Properties of *-flat extension

In this section, we introduce a special kind of flat extension, which
we call *-flat extension. In the context of phantom homology, we study
some of its properties.

Consider Noetherian ring R and an R-module M . At first, we ob-
serve the following fact : Given a submodule N ⊂ M , we can always

construct the sequence N
i

→ M
f
→ M/N∗

M where i is injective and
ker f = (im i)∗

M = N∗
M and this motivates us to give the following defini-

tion which is a special kind of phantom exactness.

Definition. The sequence M ′ g
→ M

f
→ M ′′ is *-exact at M if and only

if ker f = (im g)∗
M .

We introduce the following notion of *-flat extension.

Definition. Let R be a Noetherian ring of characteristic p. We call a
ring extension R → S *-flat R extension or S is *-flat over R, if and

only if S is R flat and for an R-module homomorphism N
f
→ M with



92 Flat extension and phantom homology

ker f = 0∗
N , we have an S-module homomorphism N ⊗R S

f⊗1S→ M ⊗R S
with ker(f ⊗ 1S) = ker f ⊗R S = 0∗

N⊗RS = 0∗
N ⊗R S.

We observe the following proposition.

Proposition 2.1. Let M ′ g
→ M

f
→ M ′′ be a sequence of R-modules

which is *-exact at M . If S is *-flat over R, then we have a sequence of

S-modules M ′ ⊗R S
g⊗1S→ M ⊗R S

f⊗1S→ M ′′ ⊗R S, such that ker(f ⊗ 1S) =
(im (g ⊗ 1S))∗

M⊗RS = (im g)∗
M ⊗R S.

Conversely, let R be Noetherian ring and S be a flat R algebra such
that upon tensoring, S preserves *-exactness then S is *-flat over R.

For a flat R-algebra S, S is *-flat over R if and only if it preserves
the *-exactness.

Proof. Assume that S is *-flat. For *-exactness at M we find that ker f =
(im g)∗

M /im g = 0∗

M/img where f : M/im g → M ′′. For M ′ g
→ M →

M/im g → 0, we find that (M/im g) ⊗R S = (M ⊗R S)/im (g ⊗ 1S). Thus,
ker(f ⊗ 1S) = 0∗

(M⊗RS)/im (g⊗1S) = (im (g ⊗ 1S))∗
M⊗RS/im (g ⊗ 1S) =

ker(f ⊗ 1S)/im (g ⊗ 1S). So ker(f ⊗ 1S) = (im (g ⊗ 1S))∗
M⊗RS . Moreover,

ker(f ⊗ 1S) = ker f ⊗R S = 0∗

M/im g ⊗R S = ((im g)∗
M /im g) ⊗R S =

((im g)∗
M ⊗R S)/im (g ⊗ 1S). Thus ker(f ⊗ 1S) = (im (g ⊗ 1S))∗

M⊗RS =
(im g)∗

M ⊗R S

Conversely, take 0
i

→ N
f
→ M such that ker f = 0∗

N = (im i)∗
N ,

then after tensoring with S we have ker(f ⊗ 1S) = (im (i ⊗ 1S))∗
N⊗RS =

0∗
N⊗RS = ker f ⊗R S = 0∗

N ⊗R S.
Last assertion is immediate from first two assertions.

Corollary. For any flat R algebra S, S preserves tight closure upon
tensoring if and only if S is a *-flat extension of R.

Proof. If a flat R algebra S, S preserves tight closure upon tensoring,
then S is *-flat over R since it preserves tight closure of zero submodule.

Conversely, let M be an R-module and N be its submodule. Consider

*-exact sequence N
i

→ M
f
→ M/N∗

M . From Proposition 2.1 above we find
that for a flat R algebra S, S is a *-flat over R if and only if it preserves
*-exactness. Thus, we get N∗

M ⊗R S = (N ⊗R S)∗
M⊗RS i.e. S preserves

tight closure upon tensoring.

As an immediate consequence, we have the following result.

Corollary. Let R → S be a *-flat extension of R. For a complex (C., d.),
if i-th homology group Hi(C.) is 0∗

Ci/im di
, then we have Hi(C. ⊗R S) =

0∗

(C.⊗S)i/im (di⊗S).
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Remark 2A. It is worth noting that if S is flat R algebra then N∗
M ⊗RS ⊂

(N ⊗R S)∗
M⊗RS , which is a generalization of the result of (4.11) Lemma

of [5]. Moreover for *-flat R-algebra S, expansions of all tightly closed
ideals in R are tightly closed, specifically expansions of all radical ideals
are tightly closed.

We present some examples of *-flat extensions.

Example. 1) R is regular if and only if R
F e

→ R is flat if and only if

R
F e

→ R is *-flat. Since for R-module M and for its submodule N ⊂ M ,
N [q] ⊂ F eM and (N∗)[q] = (N [q])∗ = N [q].

2) For any flat ring homomorphism R → S, if S is weakly F -regular,
then R → S is *-flat. Since for R-modules N ⊂ M , (N ⊗R S)∗

M⊗RS =
N ⊗R S ⊂ N∗

M ⊗R S ⊂ (N ⊗R S)∗
M⊗RS . (Here we mention one way which

shows how one can get ring homomorphism R → S with S as weakly
F -regular: Consider a *-flat local ring homomorphism R → S such that
R is weakly F -regular and all ideals of S which are primary to maximal
are extended ideals, then S is weakly F -regular. To see this, observe that
for any J of S which is primary to maximal in S, J = IS for some I in R
and J∗ = (IS)∗ = I∗S = IS = J . (On the other hand faithfully flatness
is sufficient for R to be weakly F -regular when S is weakly F -regular, as
this implies I∗ = I∗S ∩ R ⊂ (IS)∗ ∩ R = IS ∩ R = I)).

3) For local R → S, let S be R flat. If R, S satisfy the other conditions
of (7.15) of [6], we find S is *-flat (see (a) of (7.15) of [6]). Further in the
same way for Artinian ring R and for local R → S, where S is R flat and
R, S satisfy the other conditions of (7.12) of [6], we find S is *-flat (see
(a) of (7.12) of [6]).

Remark 2B. If S is an R-flat algebra then S is not *-flat in general. For
R and a multiplicatively closed set T (or for local R), RT is *-flat over
R (R̂ is *-flat over R) if and only if localization (completion) commutes
with tight closure.

Proposition 2.2. Consider a ring homomorphism R → S. For an R-

module homomorphism N
f
→ M assume ker f ⊂ 0∗

N . If S is *-flat exten-
sion of R, then ker(f ⊗ 1S) ⊂ 0∗

N⊗S

Proof. Consider the following maps: g : N → N/0∗
N , f ′ : N → N/ ker f ,

p : N/ ker f → N/0∗
N and i : N/ ker f → M . Now ker(g ⊗ 1S) = 0∗

N⊗RS

and x ∈ ker(f ′ ⊗ 1S) gives (p ⊗ 1S)(f ′ ⊗ 1S)(x) = 0 = (g ⊗ 1S)(x). Thus
ker(f ⊗ 1S) ⊂ 0∗

N⊗RS , since flatness of S implies i ⊗ 1S is injective and
ker(f ⊗ 1S) = ker(f ′ ⊗ 1S).
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The following proposition gives that *-flat extension not only preserves
the *-exactness but also phantom exactness i.e phantom homology.

Proposition 2.3. For R → S let S be *-flat over R and let M ′ g
→

M
f
→ M ′′ be sequence of R-modules such that ker f ⊂ (im g)∗

M , then
ker(f ⊗ 1S) ⊂ (im (g ⊗ 1S))∗

M⊗RS.

Proof. Consider the following maps: h : M → M/(im g)∗
M , f ′ : M →

M/ ker f , p : M/ ker f → M/(im g)∗
M and i : M/ ker f → M ′′. Here i⊗1S

is injective so ker(f ⊗ 1S) = ker(f ′ ⊗ 1S) ⊂ ker(h ⊗ 1S) = (im (g ⊗
1S))∗

M⊗RS .

We have an immediate corollary.

Corollary. Let R → S be a *-flat extension of R. For a complex C., if
i-th homology group Hi(C.) is phantom then so is Hi(C. ⊗R S). Thus,
*-flat extension preserves the phantom homology.

We observe that *-flat extension not only preserves phantom exactness
but also preserves stably phantom exactness.

Proposition 2.4. For R → S let S be *-flat over R, then it preserves
stably phantom exactness. More precisely, for sequence of R-modules

M ′ g
→ M

f
→ M ′′, if it is stably phantom at M then for the sequence of S

modules M ′ ⊗R S
g⊗1S→ M ⊗R S

f⊗1S→ M ′′ ⊗R S is also stably phantom at
M ⊗R S.

Proof. Let F e
R and F e

S are the Peskine-Szpiro functors for the ring R

and S respectively. For all e > 0, we have by hypothesis F e
RM ′

F e

R
g

→

F e
RM

F e

R
f

→ F e
RM ′′ such that ker F e

Rf ⊂ (im F e
Rg)∗

F e

R
M . Now for F e

RM ′ ⊗R

S = F e
S(M ′ ⊗R S) we find F e

S(M ′ ⊗R S)
F e

R
g⊗1S

→ F e
S(M ⊗R S)

F e

R
f⊗1S

→
F e

S(M ′′ ⊗R S) such that ker(F e
Rf ⊗ 1S) ⊂ (im (F e

Rg ⊗ 1S))∗

F e

S
(M⊗RS) (see

Proposition 2.3). Thus F e
Rf ⊗1S = F e

S(f ⊗1S) and F e
Rg ⊗1S = F e

S(g ⊗1S)
and we conclude.

The above defined *-flat extension has a few properties similar to that
of flat algebra. It is transitive like flat extension. Since we are concerned
with only finitely generated modules we have to restrict ourselves to the
base changes which are only module finite over the original ring.



R. Bhattacharyya 95

Proposition 2.5. Consider a ring homomorphism R → S. If S is *-flat
extension of R and T is an R algebra which is finitely generated as an
R-module then S ⊗R T is *-flat extension of T and further for a ring
homomorphism S → T ′, if T ′ is *-flat over S, then T ′ is *-flat over R.

Proof. Let N
f
→ M be T module homomorphism such that ker f = 0∗

N .

Thus for N ⊗T (T ⊗R S)
f⊗1T ⊗RS

→ M ⊗T (T ⊗R S) and for N ⊗R S
f⊗1S→

M ⊗R S we find ker(f ⊗ 1T ⊗RS) = ker(f ⊗ 1S) = 0∗
N⊗RS = 0∗

N⊗T (T ⊗RS)

and we conclude. Further if T ′ is *-flat over S for (N ⊗R S)⊗S T ′
(f⊗1S)⊗1′

T→
(M ⊗R S) ⊗S T ′ we find ker(f ⊗ 1S) ⊗ 1′

T ) = 0∗

N⊗RS⊗ST ′ = ker(f ⊗ 1T ′) =
0∗

N⊗RT ′

We conclude the section with the application of *-flat extension on
ghost M -regular sequence. We recall the definition of a ghost M -regular
sequence [3]:

Definition. Let R be a Noetherian ring of prime characteristic p > 0
and let M be a R-module. Then we say an element x ∈ R is weak ghost
M -regular if 0 :F e(M) xpe

⊆ 0∗

F e(M) for all e > 0.
A sequence x = x1, . . . , xn of elements of R is a weak ghost M -regular

sequence if xi is weak ghost (M/(x1, . . . , xi−1)M)-regular for 1 6 i 6 n.

Theorem 2.6. For a ring homomorphism R → S let S be *-flat over R.
For R-module M , if x is a weakly ghost M -regular element, then x ⊗R 1S

is weakly ghost M ⊗R S-regular. Moreover *-flatness preserves weakly
ghost M -regular sequences.

Proof. For a weakly ghost M -regular element x, we find that the kernel
of fe : F eM → F eM is contained in 0∗

F eM , where fe is multiplication by
xpe

. Now by Proposition 2.2 we find ker(fe ⊗1S) ⊂ 0∗
F eM⊗S = 0∗

F e

S
(M⊗RS).

To prove the second statement let Mi−1 = (x1, ..xi−1)M and for f i
e :

F e(M/Mi−1) → F e(M/Mi−1) where f i
e is multiplication by xpe

i we find
that the kernel of f i

e is cotained in 0∗

F e(M/Mi−1). Thus we get f i
e ⊗R

1S : F e(M/Mi−1) ⊗R S → F e(M/Mi−1) ⊗R S where F e(M/Mi−1) ⊗R

S = F e
S((M ⊗R S)/(x1, ..xi−1)(M ⊗R S)) and by Proposition 2.2 we

conclude.

3. Behaviour of test ideal under *-flat extension

In this section, we study the behaviour of test ideal under *-flat ring
extension. At first, we recall the definition of test ideal (see [5]).
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Definition. Let R be a Noetherian ring of prime characteristic p > 0,
the test ideal τ(R) be the ideal of R which is ∩M Ann R0∗

M where M runs
through all finitely generated R-modules.

Remark 3A. R and τ(R)∩R0 is the set of test elements (see (b) of (8.23)
of [5]). It turns out that for local ring (R, m, K), τ(R) is the intersection
of the annihilators of 0∗

M where M is an element of family of R-module
M of finite length (see (d) of (8.23) Proposition of [5]). Moreover it is
sufficient to consider the family of essential extension of K of finite length,
whose union is the injective hull of K (see proof of (c) of (8.23) and (d)
of (8.23) Proposition of [5]).

In [6] the extension of test ideals has been studied, here we quote the
result:

Theorem 3.1 ((7.36) Theorem, [6]). Let (R, m, K) → (S, n, L) be a flat
local homomorphism of complete local rings such that L/K is separable
and the closed fibre S/mS is regular. Then τ(S) = τ(R)S

There is a generalization of the above result in [1] when R → S is a
smooth morphism of locally finite type:

Theorem 3.2 ((5.1) Theorem, [1]). Let (R, m, K) → (S, n, L) be a (lo-
cally finite type) smooth homomorphism of reduced excellent rings of
positive characteristic p. Suppose that test ideals commute with localiza-
tion and that for each maximal ideal m ⊂ R, Rm/mRm is a perfect field.
Then τ(S) = τ(R)S.

We need the definition of approximately Gorenstein ring (see [4]).

Definition. A local ring (R, m) is approximately Gorenstein if for every
integer N > 0 there is an m primary irreducible ideal IN of R such that
IN ⊂ mN . The sequence of ideals {IN } is called sequence of small cofinite
irreducible.

Remark 3B. It turns out that, for approximately Gorenstein local ring
(R, m, K), if ER is the injective hull of K (which may not be a finitely
generated module), then ER = limN R/IN , where {IN } is the sequence of
small cofinite irreducible. Approximately Gorenstein local ring provides
examples of a large class of rings, which includes the example of reduced
excellent local rings (see (5.2) Theorem of [4]. For a list of approximately
Gorenstein local rings, see also (8.6) Discussion of [5].
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Proposition 3.3. Consider a flat local ring homomorphism (R, m) →
(S, n) such that R is approximately Gorenstein and the fibre S/mS is a
Gorenstein ring. Then S is approximately Gorenstein ring.

Moreover, if the ideals {IN } of R is the sequence of small cofinite
irreducible and fibre S/mS is a zero dimensional Gorenstein ring, then
the ideals {IN S} of S is also the sequence of small cofinite irreducible.

Proof. Let ideals {IN } of R is the sequence of small cofinite irreducible and
consider the ring homomorphism R/IN → S/IN S. As R → S is faithfully
flat so for R/IN → S/IN S and IN S ⊂ (mS)N ⊂ nN . Consequently
(S/IN S)/(m/IN )(S/IN S) = S/mS is Gorenstein. So by Theorem 23.4 of
[10], S/IN S is Gorenstein. Now by (2.1) Proposition of [4], there exists an
irreducible ideal JN ⊂ nN in S such that JN is n-primary. Thus the ideals
{JN } is a sequence of small cofinite irreducible and so S is approximately
Gorenstein.

For the second assertion, as S/IN S becomes zero dimensional Goren-
stein ring, the result follows.

Theorem 3.4. Consider a local ring homomorphism (R, m) → (S, n)
such that R is approximately Gorenstein and the fibre S/mS is a zero
dimensional Gorenstein ring. If S is *-flat extension of R then τ(S) ⊃
τ(R)S.

Proof. From Proposition 2.9 we find that S is approximately Gorenstein
and if ideals {IN } of R is a sequence of small cofinite irreducible then so for
the ideals {IN S} of S. If ER is injective hull of R/m and ES is injective hull
of S/n then from Remark 3B, ER = limN R/IN and so ES =limN S/IN S =
ER ⊗R S. Let for finitely generated R-modules {Mλ}, such that Mλ ⊂ ER

and ER = limλ Mλ implies Mλ ⊗R S ⊂ ES and ES = limλ(Mλ ⊗R S).
As S is *-flat so 0∗

M ⊗R S = 0∗
M⊗RS . Thus τ(S) = ∩λAnn S0∗

Mλ⊗RS =
∩λ(Ann R0∗

Mλ
⊗R S) ⊃ (∩λAnn R0∗

Mλ
) ⊗R S = τ(R)S.

Remark 3C. It has been pointed out in [1] that for the flat local ring
homomorphism R → S, if R is complete then τ(S) ⊂ τ(R)S, as S is ∩-flat
by Chevalley’s Theorem (see paragraph above (7.18) Theorem of [6]).

Corollary. Consider complete reduced local ring (R, m). Let (S, n) be
another local ring. Consider a local ring homomorphism R → S such that
fibre S/mS is zero dimensional Gorenstein ring. If S is *-flat over R,
then τ(S) = τ(R)S.

Proof. Remark 3C gives τ(S) ⊂ τ(R)S. For other inclusion we can use
Remark 3B and then proof follows from the Theorem 3.4.
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Remark 3D. It is to be noted that in above corollary it is sufficient to
consider only R to be complete, where in (7.36) Theorem, [6] we need
both R and S to be complete. Also instead of S/mS to be regular as
it is the required in (7.36) Theorem, [6], here we need S/mS to be a
Gorenstein ring of zero dimension. But, we have a relaxation on these
conditions of (7.36) Theorem, [6] at the cost of *-flat extension S of R
which is a flat extension of R of special type.
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