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Abstract. Given a pair (X, σ) consisting of a finite tree
X and its vertex self-map σ one can construct the corresponding
Markov graph Γ(X, σ) which is a digraph that encodes σ-covering
relation between edges in X. M-graphs are Markov graphs up to
isomorphism. We obtain several sufficient conditions for the disjoint
union of M-graphs to be an M-graph and prove that each weak
component of M-graph is an M-graph itself.

Introduction

In 1964 Sharkovsky proved the following remarkable theorem.

Theorem 1. [9] If the continuous map f : [0, 1] → [0, 1] has a periodic
point of period n ∈ N, then it also has a periodic point of period m ∈ N

for all m ⊳ n, where

1⊳2⊳22
⊳· · ·⊳2n

⊳· · ·⊳7·2n
⊳5·2n

⊳3·2n
⊳· · ·⊳7·2⊳5·2⊳3·2⊳· · ·⊳7⊳5⊳3

is Sharkovsky’s ordering of N. Moreover, for every number m ∈ N there
exists a continuous map that has a periodic point of period m but does
not have periodic points of periods n ∈ N, where m ⊳ n.

In [10] Straffin proposed a strategy on how to prove Sharkovsky’s the-
orem using some elegant combinatorial arguments. The cornerstone of his
idea is to use directed graphs which naturally arise from orbits of periodic
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points. Namely, let x ∈ [0, 1] be n-periodic point of a continuous map
f : [0, 1] → [0, 1]. Consider the orbit orbf (x) = {x, f(x), . . . , fn−1(x)} =
{x1 < · · · < xn} and its natural ordering inherited from the interval.
Periodic graph Gf (x) has the vertex set {1, . . . , n − 1} and the arc set
{(i, j) : min{f(xi), f(xi+1)} 6 xj < max{f(xi), f(xi+1)}}. Here each
1 6 i 6 n − 1 represents the minimal interval [xi, xi+1] and there is an arc
i → j in Gf (x) if [xi, xi+1] “covers” [xj , xj+1] under f . Periodic graphs are
useful in combinatorial dynamics because of the following result known
as Itinerary lemma.

Lemma 1. [10] Let x ∈ [0, 1] be some periodic point of a continuous
map f : [0, 1] → [0, 1]. Suppose that there is a closed walk W = {i0 →
· · · → im−1 → i0} of length m in Gf (x). Then there exists a periodic
point y ∈ [0, 1] such that fm(y) = y and fk(y) ∈ [xik

, xik+1] for all
0 6 k 6 m − 1. Moreover, if W is primitive, then the period of y equals
m.

Here the closed walk is called primitive if it is not entirely consists
of a smaller walk traced several times. Note that Lemma 1 admits a
converse statement. Namely, for any periodic point x ∈ [0, 1] of f we
can consider its linearization Lx(f) : [0, 1] → [0, 1] which is a “connect-
the-dots” map with respect to the orbit orbf (x). Then each m-periodic
point of Lx(f) corresponds to some primitive closed walk of length m in
GLx(f)(x) = Gf (x).

Full proof of Sharkovsky’s theorem using periodic graphs can be found
in [2]. Graph-theoretic properties of periodic graphs were studied in [6–8].
These are include calculation of the number of non-isomorphic periodic
graphs with given number of vertices [6] and obtaining graph-theoretic
criteria for periodic graphs [7] and their induced subgraphs [8].

Similar approach can be used for dynamics of continuous maps on
finite topological trees (see [1] for the Sharkovsky-type result in this case).
The corresponding digraphs are called Markov graphs. These are can be
defined for combinatorial trees and their vertex maps. Thus, periodic
graphs appear as a particular case of Markov graphs where underlying
trees are paths and maps are cyclic permutations. M-graphs then defined
as Markov graphs up to isomorphism.

In [3] maps on trees were characterized for several classes of M-graphs
including complete digraphs, complete bipartite digraphs, disjoint unions
of cycles and digraphs in which each arc is a loop. It is also shown [4] that
M-graphs satisfy Seymour’s Second Neighbourhood Conjecture as well
as Caccetta–Häggkvist Conjecture. Various transformations including
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deletion and addition of vertices, doubling and reverse doubling of vertices
and taking disjoint unions of M-graphs are studied in [5]. Also, it is proved
that there exist exactly 11 pairwise non-isomorphic M-graphs which are
tournaments as well as 86 pairwise non-isomorphic 3-vertex M-graphs
(again, see [5]).

In this paper we obtain several sufficient conditions for the disjoint
union of M-graphs to be an M-graph and prove that each weak component
of M-graph is an M-graph itself.

1. Definitions and preliminary results

In what follows map is just a function. For any given map σ by Im σ
and fix σ we denote its image and the set of its fixed points, respectively.

A graph G is a pair (V, E), where V = V (G) is the set of its vertices
and E = E(G) the set of its edges. By EG(u) we denote the set of
all edges incident to the vertex u in G. A vertex u is called isolated if
|EG(u)| = 0. Similarly, u is a leaf vertex provided |EG(u)| = 1. The
unique edge incident to a leaf vertex is called a leaf edge. The set of all leaf
vertices in G is denoted by L(G). For the set of vertices A ⊂ V (G) we put
E(A) = {uv ∈ E(G) : u, v ∈ A} and ∂GA = {u ∈ A : EG(u)−E(A) 6= ∅}.
By G[A] and G[E′] we denote the subgraphs of G induced by A ⊂ V (G)
and E′ ⊂ E(G), respectively.

A graph G is called connected if for every pair of its vertices u, v ∈ V (G)
there exists a path joining them. The minimum number of edges in such
a path is called the distance dG(u, v) between u and v in G. The set of
vertices A ⊂ V (G) is connected if the induced subgraph G[A] is connected.
Similarly, E′ ⊂ E(G) is connected if so is G[E′].

The eccentricity of a vertex u in a connected graph G is the value
eccG(u) = maxv∈V (G) dG(u, v). For the pair of vertices u, v ∈ V (G) in a
connected graph G we put [u, v]G = {w ∈ V (G) : dG(u, w) + dG(w, v) =
dG(u, v)}. The set A ⊂ V (G) is convex provided [u, v]G ⊂ A for all
u, v ∈ A. The convex hull ConvG(A) of A is defined as the smallest
convex set containing A.

Put dG(u, A) = minv∈A dG(u, v) and dG(A, B) = minu∈B dG(u, A)
for all vertex sets {u}, A, B ⊂ V (G) in a connected graph G. The set
A ⊂ V (G) is called Chebyshev if for every vertex u ∈ V (G) there exists
a unique v ∈ A with dG(u, v) = dG(u, A). The corresponding map prA :
V (G) → V (G), where prA(u) = v is called the projection on a Chebyshev
set A.
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A tree is a connected acyclic graph. It should be noted that in a tree
each connected set of vertices is Chebyshev.

A directed graph or digraph Γ is a pair (V, A), where V = V (Γ) is the set
of its vertices and A = A(Γ) ⊂ V ×V is the set of its arcs. If (u, v) ∈ A(Γ),
then we write u → v in Γ. The arc of the form u → u is called a loop.
For the vertex u ∈ V (Γ) we put N+

Γ (u) = {v ∈ V (Γ) : u → v in Γ} and
N−

Γ (u) = {v ∈ V (Γ) : v → u in Γ}. The cardinalities d+
Γ (u) = |N+

Γ (u)|
and d−

Γ (u) = |N−

Γ (u)| are called the outdegree and the indegree of u,
respectively.

A digraph Γ is called complete provided A(Γ) = V (Γ)×V (Γ). Similarly,
Γ is empty if A(Γ) = ∅. By Kn and Kn we denote the complete and the
empty digraph with n vertices, respectively.

A digraph is called weakly connected if its underlying graph (which is
obtained by “forgetting” orientation of the edges and ignoring loops) is
connected. Weak component of a digraph is its maximal weakly connected
subgraph. By Γ1 ⊔ Γ2 we denote the disjoint union of digraphs Γ1 and Γ2.

A pair (X, u0) consisting of a tree X and its distinguished vertex
u0 ∈ V (X) is called a rooted tree. The digraph Γ which is obtained from
the rooted tree (X, u0) by orienting the edges of X towards u0 is called
an in-tree. The vertex u0 is the center of an in-tree Γ. It is easy to see
that for an in-tree its center is the unique vertex with zero outdegree.

For every map f : X → X one can define its functional graph as a
digraph with the vertex set X and the arc set {(x, y) : f(x) = y}. A
digraph is called functional if it isomorphic to a functional graph for some
map. It is easy to see that Γ is functional digraph if and only if d+

Γ (v) = 1
for all v ∈ V (Γ). Similarly, Γ is called partial functional if d+

Γ (v) 6 1
for all v ∈ V (Γ). Each partial functional digraph Γ corresponds to some
partial map of the form f : V (Γ) → V (Γ).

Definition 1. Let X be a tree and σ : V (X) → V (X) be some map. The
Markov graph Γ = Γ(X, σ) has the vertex set V (Γ) = E(X) and there is an
arc e1 → e2 in Γ if u2, v2 ∈ [σ(u1), σ(v1)]X for ei = uivi ∈ V (Γ), i = 1, 2.
In other words, N+

Γ (uv) = E([σ(u), σ(v)]X) for all edges uv ∈ E(X).

Example 1. Consider the tree X with V (X) = {1, . . . , 7}, E(X) =

{12, 23, 34, 45, 26, 37} and its map σ =

(

1 2 3 4 5 6 7
4 1 3 6 2 4 2

)

which

are shown in Figure 1. Then the corresponding Markov graph Γ(X, σ) is
shown in Figure 2.
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1 2 3 4 5

6 7

Figure 1. The pair (X, σ) from Example 1 (dashed arrows denote σ).

34 26 45

12 23 37

Figure 2. Markov graph Γ(X, σ) for the pair (X, σ) from Example 1.

A digraph Γ is called an M-graph if there exists a pair (X, σ) such
that Γ ≃ Γ(X, σ). Each such a pair is called the realization of Γ.

Lemma 2. [3] Let X be a tree and σ : V (X) → V (X) be a map. Then for
every pair of vertices u, v ∈ V (X) and an edge xy ∈ E([σ(u), σ(v)]X) there
exists an edge wz ∈ E([u, v]X) with wz → xy in Γ(X, σ). In particular,

[σ(u), σ(v)]X ⊂
⋃

wz∈E([u,v]X)

[σ(w), σ(z)]X .

Lemma 3. [5] Let X be a tree, A ⊂ V (X) be some connected set
of vertices, σ : V (X) → V (X) be a map and Γ = Γ(X, σ). Then
Γ(X[A], prA ◦σ) = Γ[E(A)].

Proposition 1. Let X be a tree and σ : V (X) → V (X) be some map.
Put E(σ) = {e ∈ E(X) : d−

Γ (e) > 1}. Then E(σ) = E(ConvX(Im σ)). In
particular, X[E(σ)] is the connected subgraph of X.

Proof. Let V1 = V (E(σ)) and V2 = ConvX(Im σ). If u ∈ V1, then there
exists an edge e = uv ∈ E(σ). By definition, d−

Γ (e) > 1. This means
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that there is an edge e′ = u′v′ ∈ E(X) with e′ → e in Γ(X, σ), i.e.
u, v ∈ [σ(u′), σ(v′)]X . Therefore, u ∈ V2.

Conversely, suppose u ∈ V2. Then there exists a pair of vertices x, y ∈
V (X) such that u ∈ [σ(x), σ(y)]X . At first, suppose that σ(x) 6= σ(y).
Then we can fix an edge e = uv ∈ E([σ(x), σ(y)]X). From Lemma 2
it follows that there is an edge e′ ∈ E([x, y]X) with e′ → e in Γ. Thus
d−

Γ (e) > 1 and u ∈ V1. Otherwise, let σ(x) = σ(y). Then u ∈ Im σ. If σ is
a constant map, then E(σ) = E(ConvX(Im σ)) = ∅. Thus, suppose that
σ is non-constant. This means that there exists a vertex v ∈ Im σ − {u}.
Let σ(z) = v. Since u 6= v, we can fix an edge e = uw ∈ E([u, v]X). Again,
by Lemma 2, d−

Γ (e) > 1 which implies u ∈ V1.

2. Main results

From Lemma 3 it strictly follows that each nontrivial M-graph Γ
contains a vertex v ∈ V (Γ) such that Γ − {v} is also an M-graph. In [5]
it was proved that any digraph obtained from an M-graph by deletion
of a vertex with zero outdegree (in particular, an isolated vertex) is an
M-graph itself. We generalize this result using the following theorem.

Theorem 2. Let X be a tree and σ : V (X) → V (X) be some map.
Suppose that we have a collection Ai ⊂ V (X), 1 6 i 6 m of pairwise
disjoint connected sets such that for every 1 6 i 6 m either |σ(∂XAi)| = 1
or there exists 1 6 j 6 m with σ(∂XAi) ⊂ Aj. Then Γ(X, σ)−

⋃m
i=1 E(Ai)

is an M-graph.

Proof. Consider the set of indices I1 = {1 6 i 6 m : |σ(∂XAi)| = 1} and
the corresponding map g : I1 → V (X), where σ(∂XAi) = {g(i)} for all
i ∈ I1. Similarly, the set of indices I2 = {1, . . . , m} − I1 defines the map
f : I2 → {1, . . . , m}, where σ(∂XAi) ⊂ Af(i) for all i ∈ I2.

Take a graph X −
⋃m

i=1 Ai and add to it m new vertices zi for each
1 6 i 6 m with new edges ziyi for all yi ∈ ∂X(V (X) − Ai) to obtain a
new graph X ′. It is easy to see that X ′ is a tree (one can think of X ′ as of
tree which is obtained from X by “contracting” sets Ai into points). Put

σ′(x) =



























zi if σ(x) ∈ Ai,

g(i) if x = zi and i ∈ I1,

zf(i) if x = zi and i ∈ I2,

σ(x) otherwise,

for all x ∈ V (X ′). Then Γ(X, σ) −
⋃m

i=1 E(Ai) ≃ Γ(X ′, σ′).
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Corollary 1. Let Γ be an M-graph and v ∈ V (Γ) be its vertex with
N+

Γ (v) ⊂ {v}. Then Γ − {v} is an M-graph. Moreover, if N+
Γ (v) = {v},

then there exists a realization (X, σ) of Γ − {v} such that fix σ 6= ∅.

Proof. Fix some realization (X, σ) of Γ. Let the edge e = ux ∈ E(X)
corresponds to the vertex v ∈ V (Γ). If N+

Γ (v) = ∅, then σ(u) = σ(x). In
this case for the connected set of vertices A = {u, x} we have |σ(∂XA)| = 1.
By Theorem 2, Γ − {v} is an M-graph.

Otherwise, let N+
Γ (v) = {v}. Then σ(u) = u and σ(x) = x, or σ(u) = x

and σ(x) = u. In both cases σ(∂XA) ⊂ A. Again, by Theorem 2, Γ − {v}
is an M-graph. Moreover, with the notation of Theorem 2, σ′(z1) = z1

(here A = A1). Therefore, in this case fix σ′ 6= ∅.

Example 2. Consider the tree X with V (X) = {1, . . . , 7}, E(X) =

{12, 23, 34, 16, 25, 67} and its map σ =

(

1 2 3 4 5 6 7
4 1 5 4 5 2 3

)

. Then

d−

Γ(X,σ)(16) = 0, however Γ(X, σ) − {16} is not an M-graph (see Figure 3).

16 34 12

67 23 25

Figure 3. Markov graph Γ(X, σ) for which Γ(X, σ) − {16} is not an M-graph.

Denote by V0(Γ) = {v ∈ V (Γ) : d−

Γ (v) = 0} the set of vertices with
zero indegree in Γ.

Proposition 2. For every M-graph Γ and 0 6 k 6 |V0(Γ)| there exists
V ′ ⊂ V0(Γ) with |V ′| = k such that Γ − V ′ is an M-graph. In particular,
Γ − V0(Γ) is an M-graph.

Proof. Fix a realization (X, σ) of Γ. Let the edge set E′ ⊂ E(X) cor-
responds to V0(Γ). By Proposition 1, the set E(X) − E′ = E(σ) is
connected. Since X is a connected graph, for any 0 6 k 6 |V0(Γ)| there
exists a connected set of edges E′′ ⊂ E(X) with E(X) − E′ ⊂ E′′



“adm-n4” 22:47 page #91

S. Kozerenko 269

and |E′| = |E(X)| − k. Let V ′ ⊂ V (Γ) corresponds to E(X) − E′′.
Then |V ′| = k and by Lemma 3, Γ − V ′ ≃ Γ(X, σ) − (E(X) − E′′) =
Γ(X, σ)[E′′] = Γ(X[E′′], prV (E′′) ◦σ) is an M-graph.

Note that any digraph obtained from an M-graph by addition of an
isolated vertex is also an M-graph. Using this fact one can conclude that
Γ is an M-graph if and only if so is Γ ⊔ K1. However, not every disjoint
union of two M-graphs is an M-graph itself.

Example 3. Suppose that Γ is obtained from the complete digraph with
two vertices K2 by deletion of a loop. Then Γ is an M-graph, but Γ ⊔ K1

is not (see Figure 4).

Figure 4. Disjoint union of two M-graphs which is not an M-graph.

Remark 1. [5] If we have a pair of trees Xi, i = 1, 2 and a pair of their
maps σi : V (Xi) → V (Xi) with fix σi 6= ∅, i = 1, 2, then the disjoint
union Γ(X1, σ1) ⊔ Γ(X2, σ2) is an M-graph. Indeed, “gluing” realizations
(X1, σ1) and (X2, σ2) together along some pair of fixed vertices we obtain
the realization of Γ(X1, σ1) ⊔ Γ(X2, σ2).

As a corollary of the construction in Remark 1 one can obtain a
sufficient condition for the disjoint union of two M-graphs to be an M-
graph.

Corollary 2. [5] Let Γ1 and Γ2 be a pair of M-graphs with even numbers
of loops in each. Then Γ1 ⊔ Γ2 is an M-graph. In particular, any disjoint
union of two M-graphs without loops is an M-graph itself.

It turns out that for any given M-graph we can provide a graph-
theoretic criterion for the existence of its realization (X, σ) with fix σ 6= ∅.

Proposition 3. Let Γ be a digraph. Then Γ⊔K1 is an M-graph if and only
if Γ is an M-graph and there exists its realization (X, σ) with fix σ 6= ∅.

Proof. Sufficiency of this condition follows from Remark 1, since for K1

there obviously exists its realization (X, σ) with fix σ 6= ∅. Thus, we
must prove only the necessity of this condition. To do so fix a realization
(X ′, σ′) of Γ ⊔ K1. Let the vertex v ∈ V (Γ ⊔ K1) corresponds to a unique
vertex from K1. Then N+

Γ⊔K1
(v) = {v} implying that by Corollary 1, Γ

is an M-graph and there exists its realization (X, σ) with fix σ 6= ∅.
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Corollary 3. If Γ ⊔ K1 is an M-graph, then there exists its realization
(X, σ) with fix σ 6= ∅.

Combining Remark 1 and Proposition 3, we obtain the following
result.

Proposition 4. If for a pair of digraphs Γ1 and Γ2 the digraphs Γ1 ⊔ K1

and Γ2 ⊔ K1 are M-graphs, then Γ1 ⊔ Γ2 is an M-graph.

Theorem 3. Let Γ1 be an M -graph and Γ2 be acyclic partial functional
digraph. Then Γ1 ⊔ Γ2 is also an M -graph.

Proof. Without loss of generality, we can assume that Γ2 is weakly con-
nected. Since Γ2 is acyclic and partially functional, Γ2 is an in-tree. Let
x0 ∈ V (Γ2) be its center (thus, d+

Γ2
(x0) = 0). Denote by X ′ the under-

lying tree of Γ2. For every 0 6 i 6 eccX′(x0) put ai = |N i
X′(x0)| for the

cardinality of the sphere with radius i centered at x0 in X ′.
Now fix a realization (X, σ0) of Γ1. Since V (X) is finite, σ0 has a

periodic point u0 ∈ V (X) with period m > 1. Consider the restriction
σ = σ0|orbσ0

(u0) of σ0 to orbσ0
(u0). Clearly, σ is a cyclic permutation of

orbσ0
(u0).

For every 0 6 i 6 eccX′(x0) add ai new vertices yi
1, . . . yi

ai
to X with

the new edges yi
jσ−i mod m(u0) for all 1 6 j 6 ai (of course, σ0(u0) = u0).

Denote the obtained tree as X ′′. For all u ∈ V (X ′′) put

σ′(u) =















σ(u) if u ∈ V (X),

yi−1
k if u = yi

j , i > 1 and N+
Γ2

(xi
j) = {xi−1

k },

σ(u0) if u = y0
1,

where N i
X′(x0) = {xi

j : 1 6 j 6 ai} (for example, N0
X′(x0) = {x0

1} = {x0}).
Then Γ(X ′′, σ′) ≃ Γ1 ⊔ Γ2 (the edges from E(X) correspond to the
vertices of Γ1 and edges of the form yi

jσ−i mod m(u0) correspond to the

vertices xi
j).

Note that the acyclicity condition in Theorem 3 is essential as can be
seen from the digraph in Example 3.

Example 4. Consider the pair (X, σ) from Example 1 and the corre-
sponding Markov graph Γ1 = Γ(X, σ). Also, let Γ2 be the in-tree depicted
in Figure 5 (the vertices of Γ2 are labeled according to the notation in
the proof of Theorem 3). Thus, x0 is the center of Γ2, eccX′(x0) = 2,
N1

X′(x0) = {x1
1, x1

2}, N2
X′(x0) = {x2

1, x2
2} and a1 = a2 = 2. Put u0 = 4.



“adm-n4” 22:47 page #93

S. Kozerenko 271

Then orbσ(u0) = {4, 6} and therefore m = 2. The corresponding tree X ′′

is shown in Figure 6. We also have σ′(y0
1) = 6, σ′(y1

1) = σ′(y1
2) = y0

1 and
σ′(y2

1) = σ′(y2
2) = y1

2.

x2
1 x1

2
x0 x1

1

x2
2

Figure 5. The in-tree Γ2.

1 2 3 4 5

6 7

y1
1 y1

2

y0
1

y2
1

y2
2

Figure 6. The tree X ′′ from Example 4.

Theorem 4. The disjoint union of any collection of weak components
(in particular, each weak component) in an M-graph is an M-graph itself.

Proof. It is sufficient to prove that for any M-graph Γ and its weak
component Γ′ the digraph Γ − V (Γ′) is an M-graph. To do so fix a
realization (X, σ) of Γ. Let the set of edges E′ ⊂ E(X) corresponds to
the vertex set of Γ′. Consider the components X1, . . . , Xm of the induced
subgraph X[E′] in X and put Ai = V (Xi) for all 1 6 i 6 m.

Suppose that for some 1 6 i 6 m there exists a vertex x ∈ Ai with
σ(x) /∈ ∪m

j=1Aj = V (X[E′]). Then EX(σ(x)) ∩ E′ = ∅. If for some y ∈ Ai

we have σ(x) 6= σ(y), then dX(σ(x), σ(y)) > 2. This means that there is a
vertex u ∈ [σ(x), σ(y)]X such that e = uσ(x) ∈ E(X). By Lemma 2, there
exists an edge e′ ∈ E([x, y]X) ⊂ E(Ai) with e′ → e in Γ(X, σ). Since
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e /∈ E′, Γ′ is not a weak component of Γ. The obtained contradiction
implies that in this case we have σ(x) = σ(y) for every y ∈ Ai. In other
words, |σ(Ai)| = 1.

Now let 1 6 i 6 m is fixed and for every vertex x ∈ Ai there exists
1 6 jx 6 m with σ(x) ∈ Ajx . We want to prove that in this case jx = jy

for each pair of vertices x, y ∈ Ai. To the contrary, suppose jx 6= jy for
some x, y ∈ Ai. Then dX(Ajx , Ajy ) > 1. This implies the existence of an
edge e ∈ E([σ(x), σ(y)]X) − ∪m

k=1E(Ak). Again, from Lemma 2 it follows
that there exists e′ ∈ E([x, y]X) ⊂ E(Ai) with e′ → e in Γ(X, σ) which
is a contradiction. Thus, in this case σ(Ai) ⊂ Aj for some 1 6 j 6 m.
Theorem 2 now asserts that Γ − V (Γ′) is an M-graph.

Corollary 4. If for a pair of digraphs Γ1 and Γ2 their disjoint union
Γ1 ⊔ Γ2 is an M-graph, then both Γ1 and Γ2 are M-graphs.

Proof. Clearly, Γ1 and Γ2 are both disjoint unions of weak components
in Γ1 ⊔ Γ2.

Proposition 5. Let Γ1 and Γ2 be a pair of nontrivial digraphs having
loops at each of their vertices. Then Γ1 ⊔ Γ2 is an M-graph if and only if
Γ1 ⊔ K1 and Γ2 ⊔ K1 are both M-graphs.

Proof. The sufficiency of this condition strictly follows from Proposition 4.
To prove its necessity fix a realization (X, σ) of Γ = Γ1 ⊔ Γ2. Let Γ′ be a
weak component in Γ and E′ ⊂ E(X) be the corresponding set of edges
in X. We want to prove that E′ is connected. To the contrary, suppose
that there is a partition E′ = E1 ⊔ E2 with dX(V (E1), V (E2)) > 1.

Since Γ′ is weakly connected, there is a pair of edges ei = uivi ∈ Ei, i =
1, 2 with e1 → e2 or e2 → e1 in Γ′. Without loss of generality, assume
e1 → e2 in Γ′. We have e1, e2 ∈ N+

Γ(X,σ)(e1) which implies [u1, u2]X ⊂

[σ(u1), σ(v1)]X . However, the inequality dX(V (E1), V (E2)) > 1 asserts
E([u1, u2]X) − E′ 6= ∅. In other words, there exists an edge e′ /∈ E′ such
that e1 → e′ in Γ. Therefore, Γ′ is not a weak component in Γ. The
obtained contradiction proves that E′ is connected.

By Lemma 3, Γ′ ≃ Γ(X, σ)[E′] = Γ(X[E′], prV (E′) ◦σ). Furthermore,
since Γ1 and Γ2 are nontrivial digraphs, we have Γ 6= Γ′. This implies
∂XV (E′) 6= ∅. Fix a vertex w ∈ ∂XV (E′) and an edge e ∈ EX(w) − E′.
Let E′′ be the vertex set of the weak component in Γ(X, σ) which con-
tains e. Similarly, we can prove that E′′ is connected. Also, note that
w ∈ ∂XV (E′′). Finally, the proof of Theorem 4 implies that σ(∂XV (E′)) ⊂
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∂XV (E′) as well as σ(∂XV (E′′)) ⊂ ∂XV (E′′). Hence, we can conclude
that σ(w) = w.

Thus, for every weak component Γ′ of Γ there exists its realization
(X ′, σ′) with fix σ′ 6= ∅. But Γ1 (as well as Γ2) is a disjoint union of weak
components in Γ. Combining this fact with Remark 1 and Proposition 4,
we obtain that Γ1 ⊔ K1 as well as Γ2 ⊔ K1 are M-graphs.

Example 5. Consider the path X ≃ P4 with V (X) = {1, 2, 3, 4}, E(X) =

{12, 23, 34} and its vertex map σ =

(

1 2 3 4
3 1 4 2

)

. Then Γ(X, σ) has

a loop at each vertex, but Γ(X, σ) ⊔ K1 is not an M-graph.
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