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Abstract. The purpose of this paper is to introduce some
new classes of modules which is closely related to the classes of
sharp modules, pseudo-Dedekind modules and TV -modules. In this
paper we introduce the concepts of Φ-sharp modules, Φ-pseudo-
Dedekind modules and Φ-TV -modules. Let R be a commutative
ring with identity and set H = {M | M is an R-module and Nil(M)
is a divided prime submodule of M}. For an R-module M ∈ H,
set T = (R \ Z(M)) ∩ (R \ Z(R)), T(M) = T −1(M) and P :=
(Nil(M) :R M). In this case the mapping Φ : T(M) −→ MP given
by Φ(x/s) = x/s is an R-module homomorphism. The restriction
of Φ to M is also an R-module homomorphism from M in to MP

given by Φ(m/1) = m/1 for every m ∈ M . An R-module M ∈ H
is called a Φ-sharp module if for every nonnil submodules N, L of
M and every nonnil ideal I of R with N ⊇ IL, there exist a nonnil
ideal I ′ ⊇ I of R and a submodule L′ ⊇ L of M such that N = I ′L′.
We prove that Many of the properties and characterizations of sharp
modules may be extended to Φ-sharp modules, but some can not.

1. Introduction

We assume throughout this paper all rings are commutative with 1 6= 0
and all modules are unitary. An element x of an integral domain R is called
primal if whenever x | y1y2, with x, y1, y2 ∈ R, then x = z1z2 where z1 | y1

and z2 | y2. Cohn in [18] introduced the concept of Schreier domains.
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An integral domain R is called a pre-Schreier domain if every nonzero
element of R is primal. If in addition R is integrally closed, then R is
called a Schreier domain. In [27], Z. Ahmad, T. Dumitrescu and M. Epure
introduced the notion of sharp domains. A domain R is said to be a sharp
domain if whenever I ⊇ AB with I, A, B nonzero ideals of R, then there
exist ideals A′ ⊇ A and B′ ⊇ B such that I = A′B′. Let R be a ring with
identity and Nil(R) be the set of nilpotent elements of R. Recall from [19]
and [12], that a prime ideal P of R is called a divided prime ideal if P ⊂ (x)
for every x ∈ R\P ; thus a divided prime ideal is comparable to every ideal
of R. Badawi in [9], [10], [12], [13], [14] and [15], the scond-named author
investigated the class of rings H = {R | R is a commutative ring with 1 6=
0 and Nil(R) is a divided prime ideal of R}. Anderson and Badawi in [6]
and [7] generalized the concept of Prüfer, Dedekind, Krull and Bezout
domain to context of rings that are in the class H. Lucas and Badawi
in [11] generalized the concept of Mori domains to the context of rings
that are in the class H. Also, authors this paper in [25] generalized the
concept of sharp domains to the context of rings that are in the class H.
Let R be a ring, Z(R) the set of zero divisors of R and S = R \ Z(R).
Then T (R) := S−1R denoted the total quotient ring of R. We start by
recalling some background material. A nonzero divisor of a ring R is called
a regular element and an ideal of R is said to be regular if it contains
a regular element. An ideal I of a ring R is said to be a nonnil ideal if
I * Nil(R). If I is a nonnil ideal of R ∈ H, then Nil(R) ⊂ I. In particular,
it holds if I is a regular ideal of a ring R ∈ H. Recall from [6] that for
a ring R ∈ H, the map φ : T (R) −→ RNil(R) given by φ(a/b) = a/b, for
a ∈ R and b ∈ R \ Z(R), is a ring homomorphism from T (R) into RNil(R)

and φ resticted to R is also a ring homomorphism from R into RNil(R)

given by φ(x) = x/1 for every x ∈ R. Let R ∈ H. Then R is called a
φ-sharp ring if whenever for nonnil ideals I, A, B of R with I ⊇ AB, then
I = A′B′ for nonnil ideals A′, B′ of R where A′ ⊇ A and B′ ⊇ B [25].

For a nonzero ideal I of R let I−1 = {x ∈ T (R) : xI ⊆ R}. It is
obvious that II−1 ⊆ R. An ideal I of R is called invertible, if II−1 = R.
The ν-closure of I is the ideal Iν = (I−1)−1 and I is called divisorial ideal
( or ν − ideal ) if Iν = I. A nonzero ideal I of R is called t-ideal if I = It

in which

It =
⋃

{Jν | J ⊆ I is a nonzero finitely generated ideal of R}.

Let R ∈ H. Then a nonnil ideal I of R is called φ-invertible if φ(I) is an
invertible ideal of φ(R). A nonnil ideal I is φ-ν-ideal if φ(I) is a ν-ideal
of φ(R) [11]. A nonnil ideal I of R is a φ-t-ideal if φ(I) is a t-ideal of
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φ(R) [25]. Let R ∈ H. Then R is called a φ-pseudo-Dedekind ring if the
ν-closure of each nonnil ideal of R is φ-invertible. Also, R is said to be a
φ-TV ring in which every φ-t-ideal is a φ-ν-ideal [25].

Let R be a ring and M be an R-module. Then M is a multiplication
R-module if every submodule N of M has the form IM for some ideal
I of R. If M be a multiplication R-module and N a submodule of M ,
then N = IM for some ideal I of R. Hence I ⊆ (N :R M) and so
N = IM ⊆ (N :R M)M ⊆ N . Therefore N = (N :R M)M [16]. Let M
be a multiplication R-module, N = IM and L = JM be submodules
of M for fome ideals I and J of R. Then, the product of N and L
is denoted by N.L or NL and is defined by IJM [5]. An R-module
M is called a cancellation module if IM = JM for two ideals I and
J of R implies I = J [1]. By [21, Corollary 1 to Theorem 9], finitely
generated faithful multiplication modules are cancellation modules. It
follows that if M is a finitely generated faithful multiplication R-module,
then (IN :R M) = I(N :R M) for all ideals I of R and all submodules
N of M . If R is an integral domain and M a faithful multiplication
R-module, then M is a finitely generated R-module [17]. Let M be an
R-module and set

T = {t ∈ S : for all m ∈ M, tm = 0 implies m = 0}

= (R \ Z(M)) ∩ (R \ Z(R)).

Then T is a multiplicatively closed subset of R with T ⊆ S, and if
M is torsion-free then T = S. In particular, T = S if M is a faithful
multiplication R-module [17, Lemma 4.1]. Let N be a nonzero submodule
of M . Then we write N−1 = (M :RT

N) = {x ∈ RT : xN ⊆ M}. Then
N−1 is an R-submodule of RT , R ⊆ N−1 and NN−1 ⊆ M . We say that
N is invertible in M if NN−1 = M . Clearly 0 6= M is invertible in M .
An R-module M is called a Dedekind module if every nonzero submodule
of M is invertible [20]. An R-module M is called a valuation module if
for all m, n ∈ M , either Rm ⊆ Rn or Rn ⊆ Rm. Equivalently, M is a
valuation module if for all submodules N and K of M , either N ⊆ K or
K ⊆ N [3]. The ν−closure of N is the submodule Nν = (N−1)−1 and N is
called ν−submodule if N = NνM [23] and [3]. If M is a finitely generated
faithful multiplication R-module, then Nν = (N :R M). Consequently,
Mν = R. Let M be a finitely generated faithful multiplication R-module,
N a submodule of M and I an ideal of R. Then N is a ν-submodule of
M if and only if (N :R M) is a ν-ideal of R. Also I is ν-ideal of R if and
only if IM is a ν-submodule of M [2]. If N is an invertible submodule
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of a faithful multiplication module M over an integral domain R, then
(N :R M) is invertible and hence is a ν-ideal of R. So N is a ν-submodule
of M [2]. If R is an integral domain, M a faithful multiplication R-module
and N a nonzero submodule of M , then Nν = (N :R M)ν [2, Lemma 1].

Let M be an R-module. An element r ∈ R is said to be zero divisor
on M if rm = 0 for some 0 6= m ∈ M . The set of zero divisors of M
is denoted by ZR(M) (briefly, Z(M)). It is easy to see that Z(M) is
not necessarily an ideal of R, but it has the property that if a, b ∈ R
with ab ∈ Z(M), then either a ∈ Z(M) or b ∈ Z(M). A submodule
N of M is called a nilpotent submodule if [N :R M ]nN = 0 for some
positive integer n. An element m ∈ M is said to be nilpotent if Rm is
a nilpotent submodule of M [4]. We let Nil(M) to denote the set of all
nilpotent elements of M ; then Nil(M) is a submodule of M provided
that M is a faithful module, and if in addition M is multiplication, then
Nil(M) = Nil(R)M =

⋂
P , where the intersection runs over all prime

submodules of M , [4, Theorem 6]. If M contains no nonzero nilpotent
elements, then M is called a reduced R-module. A submodule N of M is
said to be a nonnil submodule if N * Nil(M). Recall that a submodule N
of M is prime if whenever rm ∈ N for some r ∈ R and m ∈ M , then either
m ∈ N or rM ⊆ N . If N is a prime submodule of M , then p := [N :R M ]
is a prime ideal of R. In this case we say that N is a p-prime submodule
of M . Let N be a submodule of multiplication R-module M , then N is
a prime submodule of M if and only if [N :R M ] is a prime ideal of R
if and only if N = pM for some prime ideal p of R with [0 :R M ] ⊆ p,
[17, Corollary 2.11]. Recall from [3] that a prime submodule P of M is
called a divided prime submodule if P ⊂ Rm for every m ∈ M \ P ; thus
a divided prime submodule is comparable to every submodule of M .

Now assume that T −1(M) = T(M). Set

H = {M | M is an R-module and Nil(M) is a divided prime

submodule of M}.

For an R-module M ∈ H, Nil(M) is a prime submodule of M . So P :=
[Nil(M) :R M ] is a prime ideal of R. If M is an R-module and Nil(M) is
a proper submodule of M , then [Nil(M) :R M ] ⊆ Z(R). Consequently,
R \ Z(R) ⊆ R \ [Nil(M) :R M ]. In particular, T ⊆ R \ [Nil(M) :R M ]
[22]. Recall from [22] that we can define a mapping Φ : T(M) −→ MP

given by Φ(x/s) = x/s which is clearly an R-module homomorphism.
The restriction of Φ to M is also an R-module homomorphism from M
in to MP given by Φ(m/1) = m/1 for every m ∈ M . A nonnil submodule
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N of M is said to be Φ-invertible if Φ(N) is an invertible submodule
of Φ(M) [26]. Let M ∈ H. Then M is a Φ-Dedekind R-module if every
nonnil submodule of M is Φ-invertible [26]. In this paper we introduce a
generalization of φ-sharp rings and give some properties of this class of
modules.

2. Φ-sharp modules

Definition 2.1. Let R be a ring and M ∈ H be an R-module. Then M
is called a Φ-sharp module if for every nonnil submodules N, L of M and
every nonnil ideal I of R with N ⊇ IL, there exist a nonnil ideal I ′ ⊇ I
of R and a submodule L′ ⊇ L of M such that N = I ′L′.

Theorem 2.2. Let R be a ring and M ∈ H with Nil(M) = Z(R)M .
Then M is a Φ-sharp module if and only if M/ Nil(M) is a sharp module.

Proof. Since Nil(M) = Z(R)M , then Nil(R) = (Nil(M) :R M) =
(Z(R)M :R M) = Z(R) by [22, Proposition 1]. Let M be a Φ-sharp module
and let N/ Nil(M), L/ Nil(M) be nonzero submodules of M/ Nil(M) and
I be a nonzero ideal of R with N/ Nil(M) ⊇ I(L/ Nil(M)). Then N ⊇ IL
and so there exist a nonnil ideal I ′ ⊇ I of R and a submodule L′ ⊇ L of
M such that N = I ′L′. Thus N/ Nil(M) = I ′((L′/ Nil(M)) for nonzero
ideal I ′ ⊇ I of R and for a nonzero submodule L/ Nil(M) ⊇ L′/ Nil(M)
of M/ Nil(M) as well.

Conversely, let M/ Nil(M) be a sharp module and let N, L be nonnil
submodules of M and I a nonnil ideal of R such that N ⊇ IL. Then
N/ Nil(M), L/ Nil(M) are nonzero submodules of M/ Nil(M) and I is a
nonzero ideal of R with N/ Nil(M) ⊇ I(L/ Nil(M)). So, N/ Nil(M) =
I ′((L′/ Nil(M)) for nonzero ideal I ′ ⊇ I of R and for a nonzero submodule
L/ Nil(M) ⊇ L′/ Nil(M) of M/ Nil(M). Therefore N = I ′L′ for a nonnil
ideal I ′ ⊇ I of R and for a submodule L′ ⊇ L of M . Thus M is a Φ-sharp
module.

Lemma 2.3. ([26, Lemma 2.6]) Let R be a ring and M a finitely gen-
erated faithful multiplication R-module with M ∈ H. Then M

Nil(M) is

isomorphic to Φ(M)
Nil(Φ(M)) as R-module.

Corollary 2.4. Let R be a ring and M ∈ H be a finitely generated faithful
multiplication R-module with Nil(M) = Z(R)M . Then M is a Φ-sharp

module if and only if Φ(M)
Nil(Φ(M)) is a sharp module.
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Theorem 2.5. Let R be a ring and M ∈ H with Nil(M) = Z(R)M .
Then M is a Φ-sharp module if and only if Φ(M) is a sharp module.

Proof. Let M be a Φ-sharp module and let Φ(N) ⊇ IΦ(L) for nonnil
submodules N, L of M and nonnil ideal I of R. Since Nil(M) is a divided
prime submodule of M and N, L properly contain Nil(M), so both contain
Ker(Φ) by [26, Propoition 2.1]. Therefore N ⊇ IL and hence N = I ′L′

for a nonnil submodule L′ ⊇ L of M and a nonnil ideal I ′ ⊇ I of R. Thus
Φ(N) = I ′Φ(L′) for a submodule Φ(L′) ⊇ Φ(L) and an ideal I ′ ⊇ I. So
Φ(M) is a sharp module.

Converesly, Let Φ(M) be a sharp module and let N, L be nonnil
submodules of M and I an ideal of R with N ⊇ IL. Thus Φ(N) ⊇ IΦ(L)
and so Φ(N) = I ′Φ(L′) for a submodule Φ(L′) ⊇ Φ(L) and an ideal
I ′ ⊇ I. By the same reason as above, we have N = I ′L′ for a nonnil
submodule L′ ⊇ L of M and a nonnil ideal I ′ ⊇ I of R. Hence M is a
Φ-sharp module.

Corollary 2.6. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module with Nil(M) = Z(R)M . The following
statements are equivalent:

(1) M is a Φ-sharp module;
(2) M/ Nil(M) is a sharp module;

(3) Φ(M)
Nil(Φ(M)) is a sharp module;

(4) Φ(M) is a sharp module.

Proposition 2.7. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module with Nil(M) = Z(R)M . If M is a Φ-
Dedekind module, then M is a Φ-sharp module.

Proof. If M is a Φ-Dedekind module, then M/ Nil(M) is a Dedekind
module by [26, Theorem 2.10]. So, by [23, Corollary 3.5], M/ Nil(M) is a
sharp module. Therefore, by Theorem 2.2, M is a Φ-sharp module.

In [26] it is shown that for each prime ideal P of R, (M/ Nil(M))P =
MP /(Nil(M))P = MP / Nil(MP ) and MP ∈ H.

Proposition 2.8. Let R be a ring and M ∈ H be a Φ-sharp module with
Nil(M) = Z(R)M . Then MP is a Φ-sharp module for each prime ideal
P of R.

Proof. We have Nil(R) ⊆ Ann( M

Nil(R)M ) = Ann( M

Nil(M)). If M is a Φ-

sharp module, then by Theorem 2.2, M/ Nil(M) is a sharp module. So, by
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[23, Proposition 3.8], (M/ Nil(M))P = MP / Nil(MP ) is a sharp module.
Therefore, by Theorem 2.2, MP is a Φ-sharp module.

Theorem 2.9. Let R be a ring and M be a finitely generated faithful
multiplication R-module. The following statements are equivalent:

(1) If R ∈ H is a φ-sharp ring, then M is a Φ-sharp module;

(2) If M ∈ H is a Φ-sharp module, then R is a φ-sharp ring.

Proof. (1) ⇒ (2) Let R ∈ H. Then, by [22, Proposition 3], M ∈ H. Let
R be a φ-sharp ring and let N, L be nonnil submodules of M and I be
a nonnil ideal of R with N ⊇ IL. Then (N :R M), (L :R M) are nonnil
ideals of R such that (N :R M) ⊇ I(L :R M). So (N :R M) = I ′J ′

for nonnil ideals I ′ ⊇ I and J ′ ⊇ (L :R M) of R. Thus N = I ′(J ′M)
for a nonnil ideal I ′ ⊇ I of R and a nonnil submodule J ′M ⊇ L of M .
Therefore M is a Φ-sharp module.

(2) ⇒ (1) Let M ∈ H. Then, by [22, Proposition 3], R ∈ H. Let M be
a Φ-sharp module and let I, J, K be nonnil ideals of R with K ⊇ IJ . So
KM, JM are nonnil submodules of M such that KM ⊇ I(JM). Thus
KM = I ′L′ for a nonnil ideal I ′ ⊇ I of R and a nonnil submodule
L′ ⊇ JM of M . Therefore K = I ′(L′ :R M) for nonnil ideals I ′ ⊇ I and
(L′ :R M) ⊇ J of R. So R is a φ-sharp ring.

Definition 2.10. Let R be a ring and M be an R-module. Then M is
said to be a Φ-pseudo-Dedekind module if the ν-closure of each nonnil
submodule of M is Φ-invertible.

Theorem 2.11. Let R be a ring and M ∈ H be an R-module. Then M
is a Φ-pseudo-Dedekind module if and only if M/ Nil(M) is a pseudo-
Dedekind module.

Proof. Let M be a Φ-pseudo-Dedekind module and N/ Nil(M) be a
nonzero submodule of M/ Nil(M). Then N is a nonnil submodule of M
and so the ν-closure of N is Φ-invertible, i.e, Nν is Φ-invertible. Thus, by
[24, Lemma 3.6], (N/ Nil(M))ν = Nν/ Nil(M) is invertible as well.

Conversely, let M/ Nil(M) be a pseudo-Dedekind module and N be
a nonnil submodule of M . Thus N/ Nil(M) is a nonzero submodule
of M/ Nil(M) and so Nν/ Nil(M) = (N/ Nil(M))ν is invertible. So, by
[24, Lemma 3.6], Nν is Φ-invertible. Therefore, M is a Φ-pseudo-Dedekind
module.

By Lemma 2.3, we have the following theorem.
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Corollary 2.12. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module. Then M is a Φ-pseudo-Dedekind module
if and only if Φ(M)

Nil(Φ(M)) is a pseudo-Dedekind module.

Theorem 2.13. Let R be a ring and M ∈ H be an R-module. Then M
is a Φ-pseudo-Dedekind module if and only if Φ(M) is a pseudo-Dedekind
module.

Proof. Let M be a Φ-pseudo-Dedekind module and Φ(N) be a submodule
of Φ(M) for a nonnil submodule N of M . Thus Nν is Φ-invertible. Hence
Φ(Nν) = (Φ(N))ν is invertible.

Conversely, let Φ(M) be a pseudo-Dedekind module and N be a
nonnil submodule of M . Then Φ(N) is a submodule of Φ(M) and so
(Φ(N))ν = Φ(Nν) is invertible submodule of Φ(M). Therefore Nν is
Φ-invertible.

Corollary 2.14. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module. The following are equivalent:

(1) M is a Φ-pseudo-Dedekind module;

(2) M/ Nil(M) is a pseudo-Dedekind module;

(3) Φ(M)/ Nil(Φ(M)) is a pseudo-Dedekind module;

(4) Φ(M) is a pseudo-Dedekind module.

Theorem 2.15. Let R be a ring and M be a finitely generated faithful
multiplication R-module. The following statements are equivalent:

(1) If R ∈ H is a φ-pseudo-Dedekind ring, then M is a Φ-pseudo-
Dedekind module;

(2) If M ∈ H is a Φ-pseudo-Dedekind module, then R is a φ-pseudo-
Dedekind ring.

Proof. Since Nil(R) ⊆ Ann( M

Nil(R)M ) = Ann( M

Nil(M)), we have:

(1) ⇒ (2) Let R ∈ H. Then, by [22, Proposition 3], M ∈ H. If R is a
φ-pseudo-Dedekind ring, then by [25, Theorem 2.10], R

Nil(R) is a pseudo-

Dedekind domain. So, by [23, Theorem 3.12], M

Nil(M) is a pseudo-Dedekind
module. Therefore, by Theorem 2.11, M is a Φ-pseudo-Dedekind module.

(2) ⇒ (1) Let M ∈ H. Then, by [22, Proposition 3], R ∈ H. If M is a
Φ-pseudo-Dedekind module, then by Theorem 2.11, M

Nil(M) is a pseudo-

Dedekind module. So, by [23, Theorem 3.12], R

Nil(R) is a pseudo-Dedekind

domain. Therefore, by [25, Theorem 2.10], R is a φ-pseudo-Dedekind
ring.
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Proposition 2.16. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module. If M is a Φ-sharp module, then M is a
Φ-pseudo-Dedekind module.

Proof. Let M be a Φ-sharp module. Then, by Theorem 2.2, M/ Nil(M)
is a sharp module. So, by [23, Lemma 3.11], M/ Nil(M) is a pseudo-
Dedekind module. Therefore, by Theorem 2.11, M is a Φ-pseudo-Dedekind
module.

Recall from [26], an R-module M ∈ H is called a Φ-valuation module if
for every u ∈ R(Nil(R):RM), we have uΦ(M) ⊆ Φ(M) or u−1Φ(M) ⊆ Φ(M);
equivalently, for every a, b /∈ (Nil(R) :R M), either, aΦ(M) ⊆ bΦ(M) or
bΦ(M) ⊆ aΦ(M).

Theorem 2.17. Let R be a ring and M ∈ H be a finitely generated faithful
multiplication Φ-valuation R-module. Then the following are equivalent:

(1) M is a Φ-sharp module;
(2) M is a Φ-pseudo-Dedekind module.

Proof. (1) ⇒ (2) is given by Proposition 2.16.
(2) ⇒ (1) Let M is a Φ-pseudo-Dedekind module. Then, by The-

orem 2.11, M/ Nil(M) is a pseudo-Dedekind-module. Since M is a Φ-
valuation module, then by [26, Theorem 2.13], M/ Nil(M) is a Valuation
module. So M/ Nil(M) is sharp module by [23, Proposition 3.14]. There-
fore, by Theorem 2.11, M is a Φ-sharp module.

Definition 2.18. Let R be a ring and M ∈ H be an R-module. A
nonnil submodule N of M is called a Φ-t-submodule of M if Φ(N) is a
t-submodule of Φ(M).

It is worthwhile to note that N/ Nil(M) is a t-submodule of M/ Nil(M)
if and only if Φ(N)/ Nil(Φ(M)) is a t-submodule of Φ(M)/ Nil(Φ(M)).

Lemma 2.19. Let R be a ring and M ∈ H be an R-module and let N be
a nonnil submodule of M . Then N is a Φ-t-submodule of M if and only
if N/ Nil(M) is a t-submodule of M/ Nil(M).

Proof. Let N be a Φ-t-submodule of M . Then Φ(N) is a t-submodule of
Φ(M). Thus Φ(N) = Φ(N)νΦ(M) and so

Φ(N)/ Nil(Φ(M)) = (Φ(N)ν/ Nil(Φ(M)))(Φ(M)/ Nil(Φ(M))).

Therefore Φ(N)/ Nil(Φ(M)) is a t-submodule of Φ(M)/ Nil(Φ(M)). Hence
N/ Nil(M) is a t-submodule of M/ Nil(M). Conversely is same.
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Definition 2.20. Let R be a ring and M ∈ H be an R-module. Then M
is said to be a Φ-TV module if every Φ-t-submodule is a Φ-ν-submodule.

Theorem 2.21. Let R be a ring and M ∈ H be an R-module. Then M
is a Φ-TV module if and only if M/ Nil(M) is a TV -module.

Proof. Let M be a Φ-TV module and N/ Nil(M) be a t-submodule of
M/ Nil(M). Then, by Lemma 2.19, N a is Φ-t-submodule of M and so
N is a Φ-ν-submodule of M . Hence, by [24, Lemma 3.6], N/ Nil(M) is a
ν-submodule of M/ Nil(M). Thus M/ Nil(M) is a TV -module.

Conversely, let M/ Nil(M) be a TV -module and N be a Φ-t-submodule
of M . Then, by Lemma 2.19, N/ Nil(M) is a t-submodule of M/ Nil(M)
and so N/ Nil(M) is a ν-submodule of M/ Nil(M). Therefore, by [24,
Lemma 3.6], N is a Φ-t-submodule of M as well.

Corollary 2.22. Let R be a ring and M ∈ H be an R-module. Then M
is a Φ-TV module if and only if Φ(M)/ Nil(Φ(M)) is a TV -module.

Theorem 2.23. Let R be a ring and M ∈ H be an R-module. Then M
is a Φ-TV module if and only if Φ(M) is a TV module.

Proof. Let M be a Φ-TV module and Φ(N) be a t-submodule of Φ(M).
Then N is a Φ-t-submodule of M and so N is a Φ-ν-submodule of M .
Therefore, Φ(N) is a ν-submodule of Φ(M). Hence Φ(M) is a TV module.

Conversely, let Φ(M) be a TV module and N be a Φ-t-submodule of
M . Then Φ(N) is a t-submodule of Φ(M) and so Φ(N) is a ν-submodule
of Φ(M). Thus N is a Φ-ν-submodule of M . Therefore M is a Φ-TV
module.

Corollary 2.24. Let R be a ring and M ∈ H be a finitely generated
faithful multiplication R-module. The following are equivalent:

(1) M is a Φ-TV module;
(2) M/ Nil(M) is a TV module;
(3) Φ(M)/ Nil(Φ(M)) is a TV module;
(4) Φ(M) is a TV module.

Theorem 2.25. Let R be a ring and M be a finitely generated faithful
multiplication R-module. The following statements are equivalent:

(1) If R ∈ H is a φ-TV ring, then M is a Φ-TV module;
(2) If M ∈ H is a Φ-TV module, then R is a φ-TV ring.

Proof. By [22], [23] and [25], the proof is the same of the proof of Theo-
rem 2.15.
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The notion of a Φ-sharp-TV module means that a module that is
both a Φ-sharp module and a Φ-TV module.

Theorem 2.26. Let R be a ring and M ∈ H be a finitely generated faithful
multiplication R-module with Nil(M) = Z(R)M . If M is a Φ-sharp TV
module, then M is a Φ-Dedekind module.

Proof. Let M be a Φ-sharp TV module. Then, by Theorem 2.2 and The-
orem 2.21, M/ Nil(M) is a sharp TV module. So, by [23, Corollary 3.21],
M/ Nil(M) is a Dedekind module. Therefore M is a Φ-Dedekind module
by [26, Theorem2.10].

Theorem 2.27. Let R be a countable ring and M ∈ H be an R-module
with Nil(M) = Z(R)M . If M is a Φ-sharp module, then M is a Φ-
Dedekind module.

Proof. If M is a Φ-sharp module, then M/ Nil(M) is a sharp module by
Theorem 2.2. So, by [23, Theorem 3.7], R is a sharp domain and hence
by [27, Corollary 17], R is a Dedekind domain. Thus M/ Nil(M) is a
Dedekind domain. Therefore, by [26, Theorem2.10], M is a Φ-Dedekind
module.
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