Some remarks on $\boldsymbol{\Phi}$-sharp modules

Ahmad Yousefian Darani and Mahdi Rahmatinia

Communicated by R. Wisbauer

Abstract

The purpose of this paper is to introduce some new classes of modules which is closely related to the classes of sharp modules, pseudo-Dedekind modules and $T V$-modules. In this paper we introduce the concepts of Φ-sharp modules, Φ-pseudoDedekind modules and Φ - $T V$-modules. Let R be a commutative ring with identity and set $\mathbb{H}=\{M \mid M$ is an R-module and $\operatorname{Nil}(M)$ is a divided prime submodule of $M\}$. For an R-module $M \in \mathbb{H}$, set $T=(R \backslash Z(M)) \cap(R \backslash Z(R)), \mathfrak{T}(M)=T^{-1}(M)$ and $P:=$ $\left(\operatorname{Nil}(M):_{R} M\right)$. In this case the mapping $\Phi: \mathfrak{T}(M) \longrightarrow M_{P}$ given by $\Phi(x / s)=x / s$ is an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M in to M_{P} given by $\Phi(m / 1)=m / 1$ for every $m \in M$. An R-module $M \in \mathbb{H}$ is called a Φ-sharp module if for every nonnil submodules N, L of M and every nonnil ideal I of R with $N \supseteq I L$, there exist a nonnil ideal $I^{\prime} \supseteq I$ of R and a submodule $L^{\prime} \supseteq L$ of M such that $N=I^{\prime} L^{\prime}$. We prove that Many of the properties and characterizations of sharp modules may be extended to Φ-sharp modules, but some can not.

1. Introduction

We assume throughout this paper all rings are commutative with $1 \neq 0$ and all modules are unitary. An element x of an integral domain R is called primal if whenever $x \mid y_{1} y_{2}$, with $x, y_{1}, y_{2} \in R$, then $x=z_{1} z_{2}$ where $z_{1} \mid y_{1}$ and $z_{2} \mid y_{2}$. Cohn in [18] introduced the concept of Schreier domains.

[^0]An integral domain R is called a pre-Schreier domain if every nonzero element of R is primal. If in addition R is integrally closed, then R is called a Schreier domain. In [27], Z. Ahmad, T. Dumitrescu and M. Epure introduced the notion of sharp domains. A domain R is said to be a sharp domain if whenever $I \supseteq A B$ with I, A, B nonzero ideals of R, then there exist ideals $A^{\prime} \supseteq A$ and $B^{\prime} \supseteq B$ such that $I=A^{\prime} B^{\prime}$. Let R be a ring with identity and $\operatorname{Nil}(R)$ be the set of nilpotent elements of R. Recall from [19] and [12], that a prime ideal P of R is called a divided prime ideal if $P \subset(x)$ for every $x \in R \backslash P$; thus a divided prime ideal is comparable to every ideal of R. Badawi in [9], [10], [12], [13], [14] and [15], the scond-named author investigated the class of rings $\mathcal{H}=\{R \mid R$ is a commutative ring with $1 \neq$ 0 and $\operatorname{Nil}(R)$ is a divided prime ideal of $R\}$. Anderson and Badawi in [6] and [7] generalized the concept of Prüfer, Dedekind, Krull and Bezout domain to context of rings that are in the class \mathcal{H}. Lucas and Badawi in [11] generalized the concept of Mori domains to the context of rings that are in the class \mathcal{H}. Also, authors this paper in [25] generalized the concept of sharp domains to the context of rings that are in the class \mathcal{H}. Let R be a ring, $Z(R)$ the set of zero divisors of R and $S=R \backslash Z(R)$. Then $T(R):=S^{-1} R$ denoted the total quotient ring of R. We start by recalling some background material. A nonzero divisor of a ring R is called a regular element and an ideal of R is said to be regular if it contains a regular element. An ideal I of a ring R is said to be a nonnil ideal if $I \nsubseteq \operatorname{Nil}(R)$. If I is a nonnil ideal of $R \in \mathcal{H}$, then $\operatorname{Nil}(R) \subset I$. In particular, it holds if I is a regular ideal of a ring $R \in \mathcal{H}$. Recall from [6] that for a ring $R \in \mathcal{H}$, the map $\phi: T(R) \longrightarrow R_{\text {Nil }(R)}$ given by $\phi(a / b)=a / b$, for $a \in R$ and $b \in R \backslash Z(R)$, is a ring homomorphism from $T(R)$ into $R_{\mathrm{Nil}(R)}$ and ϕ resticted to R is also a ring homomorphism from R into $R_{\operatorname{Nil}(R)}$ given by $\phi(x)=x / 1$ for every $x \in R$. Let $R \in \mathcal{H}$. Then R is called a ϕ-sharp ring if whenever for nonnil ideals I, A, B of R with $I \supseteq A B$, then $I=A^{\prime} B^{\prime}$ for nonnil ideals A^{\prime}, B^{\prime} of R where $A^{\prime} \supseteq A$ and $B^{\prime} \supseteq B[25]$.

For a nonzero ideal I of R let $I^{-1}=\{x \in T(R): x I \subseteq R\}$. It is obvious that $I I^{-1} \subseteq R$. An ideal I of R is called invertible, if $I I^{-1}=R$. The ν-closure of I is the ideal $I_{\nu}=\left(I^{-1}\right)^{-1}$ and I is called divisorial ideal (or ν - ideal) if $I_{\nu}=I$. A nonzero ideal I of R is called t-ideal if $I=I_{t}$ in which

$$
I_{t}=\bigcup\left\{J_{\nu} \mid J \subseteq I \text { is a nonzero finitely generated ideal of } R\right\}
$$

Let $R \in \mathcal{H}$. Then a nonnil ideal I of R is called ϕ-invertible if $\phi(I)$ is an invertible ideal of $\phi(R)$. A nonnil ideal I is ϕ - ν-ideal if $\phi(I)$ is a ν-ideal of $\phi(R)$ [11]. A nonnil ideal I of R is a ϕ-t-ideal if $\phi(I)$ is a t-ideal of
$\phi(R)$ [25]. Let $R \in \mathcal{H}$. Then R is called a ϕ-pseudo-Dedekind ring if the ν-closure of each nonnil ideal of R is ϕ-invertible. Also, R is said to be a $\phi-T V$ ring in which every ϕ - t-ideal is a ϕ - ν-ideal [25].

Let R be a ring and M be an R-module. Then M is a multiplication R-module if every submodule N of M has the form $I M$ for some ideal I of R. If M be a multiplication R-module and N a submodule of M, then $N=I M$ for some ideal I of R. Hence $I \subseteq\left(N:_{R} M\right)$ and so $N=I M \subseteq\left(N:_{R} M\right) M \subseteq N$. Therefore $N=\left(N:_{R} M\right) M$ [16]. Let M be a multiplication R-module, $N=I M$ and $L=J M$ be submodules of M for fome ideals I and J of R. Then, the product of N and L is denoted by $N . L$ or $N L$ and is defined by $I J M$ [5]. An R-module M is called a cancellation module if $I M=J M$ for two ideals I and J of R implies $I=J[1]$. By [21, Corollary 1 to Theorem 9], finitely generated faithful multiplication modules are cancellation modules. It follows that if M is a finitely generated faithful multiplication R-module, then $\left(I N:_{R} M\right)=I\left(N:_{R} M\right)$ for all ideals I of R and all submodules N of M. If R is an integral domain and M a faithful multiplication R-module, then M is a finitely generated R-module [17]. Let M be an R-module and set

$$
\begin{aligned}
T & =\{t \in S: \text { for all } m \in M, t m=0 \text { implies } m=0\} \\
& =(R \backslash Z(M)) \cap(R \backslash Z(R)) .
\end{aligned}
$$

Then T is a multiplicatively closed subset of R with $T \subseteq S$, and if M is torsion-free then $T=S$. In particular, $T=S$ if M is a faithful multiplication R-module [17, Lemma 4.1]. Let N be a nonzero submodule of M. Then we write $N^{-1}=\left(M:_{R_{T}} N\right)=\left\{x \in R_{T}: x N \subseteq M\right\}$. Then N^{-1} is an R-submodule of $R_{T}, R \subseteq N^{-1}$ and $N N^{-1} \subseteq M$. We say that N is invertible in M if $N N^{-1}=M$. Clearly $0 \neq M$ is invertible in M. An R-module M is called a Dedekind module if every nonzero submodule of M is invertible [20]. An R-module M is called a valuation module if for all $m, n \in M$, either $R m \subseteq R n$ or $R n \subseteq R m$. Equivalently, M is a valuation module if for all submodules N and K of M, either $N \subseteq K$ or $K \subseteq N[3]$. The ν-closure of N is the submodule $N_{\nu}=\left(N^{-1}\right)^{-1}$ and N is called ν-submodule if $N=N_{\nu} M$ [23] and [3]. If M is a finitely generated faithful multiplication R-module, then $N_{\nu}=\left(N:_{R} M\right)$. Consequently, $M_{\nu}=R$. Let M be a finitely generated faithful multiplication R-module, N a submodule of M and I an ideal of R. Then N is a ν-submodule of M if and only if $\left(N:_{R} M\right)$ is a ν-ideal of R. Also I is ν-ideal of R if and only if $I M$ is a ν-submodule of M [2]. If N is an invertible submodule
of a faithful multiplication module M over an integral domain R, then $\left(N:_{R} M\right)$ is invertible and hence is a ν-ideal of R. So N is a ν-submodule of M [2]. If R is an integral domain, M a faithful multiplication R-module and N a nonzero submodule of M, then $N_{\nu}=\left(N:_{R} M\right)_{\nu}$ [2, Lemma 1].

Let M be an R-module. An element $r \in R$ is said to be zero divisor on M if $r m=0$ for some $0 \neq m \in M$. The set of zero divisors of M is denoted by $Z_{R}(M)$ (briefly, $Z(M)$). It is easy to see that $Z(M)$ is not necessarily an ideal of R, but it has the property that if $a, b \in R$ with $a b \in Z(M)$, then either $a \in Z(M)$ or $b \in Z(M)$. A submodule N of M is called a nilpotent submodule if $\left[N:_{R} M\right]^{n} N=0$ for some positive integer n. An element $m \in M$ is said to be nilpotent if $R m$ is a nilpotent submodule of M [4]. We let $\operatorname{Nil}(M)$ to denote the set of all nilpotent elements of M; then $\operatorname{Nil}(M)$ is a submodule of M provided that M is a faithful module, and if in addition M is multiplication, then $\operatorname{Nil}(M)=\operatorname{Nil}(R) M=\bigcap P$, where the intersection runs over all prime submodules of M, [4, Theorem 6]. If M contains no nonzero nilpotent elements, then M is called a reduced R-module. A submodule N of M is said to be a nonnil submodule if $N \nsubseteq \operatorname{Nil}(M)$. Recall that a submodule N of M is prime if whenever $r m \in N$ for some $r \in R$ and $m \in M$, then either $m \in N$ or $r M \subseteq N$. If N is a prime submodule of M, then $p:=\left[N:_{R} M\right]$ is a prime ideal of R. In this case we say that N is a p-prime submodule of M. Let N be a submodule of multiplication R-module M, then N is a prime submodule of M if and only if $\left[N:_{R} M\right.$] is a prime ideal of R if and only if $N=p M$ for some prime ideal p of R with $\left[0:_{R} M\right] \subseteq p$, [17, Corollary 2.11]. Recall from [3] that a prime submodule P of M is called a divided prime submodule if $P \subset R m$ for every $m \in M \backslash P$; thus a divided prime submodule is comparable to every submodule of M.

Now assume that $T^{-1}(M)=\mathfrak{T}(M)$. Set

$$
\begin{aligned}
& \mathbb{H}=\{M \mid M \text { is an } R \text {-module and } \operatorname{Nil}(M) \text { is a divided prime } \\
& \text { submodule of } M\} .
\end{aligned}
$$

For an R-module $M \in \mathbb{H}, \operatorname{Nil}(M)$ is a prime submodule of M. So $P:=$ $\left[\operatorname{Nil}(M):_{R} M\right]$ is a prime ideal of R. If M is an R-module and $\operatorname{Nil}(M)$ is a proper submodule of M, then $\left[\operatorname{Nil}(M):_{R} M\right] \subseteq Z(R)$. Consequently, $R \backslash Z(R) \subseteq R \backslash\left[\operatorname{Nil}(M):_{R} M\right]$. In particular, $T \subseteq R \backslash\left[\operatorname{Nil}(M):_{R} M\right]$ [22]. Recall from [22] that we can define a mapping $\Phi: \mathfrak{T}(M) \longrightarrow M_{P}$ given by $\Phi(x / s)=x / s$ which is clearly an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M in to M_{P} given by $\Phi(m / 1)=m / 1$ for every $m \in M$. A nonnil submodule
N of M is said to be Φ-invertible if $\Phi(N)$ is an invertible submodule of $\Phi(M)$ [26]. Let $M \in \mathbb{H}$. Then M is a Φ-Dedekind R-module if every nonnil submodule of M is Φ-invertible [26]. In this paper we introduce a generalization of ϕ-sharp rings and give some properties of this class of modules.

2. Φ-sharp modules

Definition 2.1. Let R be a ring and $M \in \mathbb{H}$ be an R-module. Then M is called a Φ-sharp module if for every nonnil submodules N, L of M and every nonnil ideal I of R with $N \supseteq I L$, there exist a nonnil ideal $I^{\prime} \supseteq I$ of R and a submodule $L^{\prime} \supseteq L$ of M such that $N=I^{\prime} L^{\prime}$.

Theorem 2.2. Let R be a ring and $M \in \mathbb{H}$ with $\operatorname{Nil}(M)=Z(R) M$. Then M is a Φ-sharp module if and only if $M / \operatorname{Nil}(M)$ is a sharp module.

Proof. Since $\operatorname{Nil}(M)=Z(R) M$, then $\operatorname{Nil}(R)=\left(\operatorname{Nil}(M):_{R} M\right)=$ $\left(Z(R) M:_{R} M\right)=Z(R)$ by $[22$, Proposition 1]. Let M be a Φ-sharp module and let $N / \operatorname{Nil}(M), L / \operatorname{Nil}(M)$ be nonzero submodules of $M / \operatorname{Nil}(M)$ and I be a nonzero ideal of R with $N / \operatorname{Nil}(M) \supseteq I(L / \operatorname{Nil}(M))$. Then $N \supseteq I L$ and so there exist a nonnil ideal $I^{\prime} \supseteq I$ of R and a submodule $L^{\prime} \supseteq L$ of M such that $N=I^{\prime} L^{\prime}$. Thus $N / \operatorname{Nil}(M)=I^{\prime}\left(\left(L^{\prime} / \operatorname{Nil}(M)\right)\right.$ for nonzero ideal $I^{\prime} \supseteq I$ of R and for a nonzero submodule $L / \operatorname{Nil}(M) \supseteq L^{\prime} / \operatorname{Nil}(M)$ of $M / \operatorname{Nil}(M)$ as well.

Conversely, let $M / \operatorname{Nil}(M)$ be a sharp module and let N, L be nonnil submodules of M and I a nonnil ideal of R such that $N \supseteq I L$. Then $N / \operatorname{Nil}(M), L / \operatorname{Nil}(M)$ are nonzero submodules of $M / \operatorname{Nil}(M)$ and I is a nonzero ideal of R with $N / \operatorname{Nil}(M) \supseteq I(L / \operatorname{Nil}(M))$. So, $N / \operatorname{Nil}(M)=$ $I^{\prime}\left(\left(L^{\prime} / \operatorname{Nil}(M)\right)\right.$ for nonzero ideal $I^{\prime} \supseteq I$ of R and for a nonzero submodule $L / \operatorname{Nil}(M) \supseteq L^{\prime} / \operatorname{Nil}(M)$ of $M / \operatorname{Nil}(M)$. Therefore $N=I^{\prime} L^{\prime}$ for a nonnil ideal $I^{\prime} \supseteq I$ of R and for a submodule $L^{\prime} \supseteq L$ of M. Thus M is a Φ-sharp module.

Lemma 2.3. ([26, Lemma 2.6]) Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Then $\frac{M}{\operatorname{Nil}(M)}$ is isomorphic to $\frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}$ as R-module.

Corollary 2.4. Let R be a ring and $M \in \mathbb{H}$ be a finitely generated faithful multiplication R-module with $\operatorname{Nil}(M)=Z(R) M$. Then M is a Φ-sharp module if and only if $\frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}$ is a sharp module.

Theorem 2.5. Let R be a ring and $M \in \mathbb{H}$ with $\operatorname{Nil}(M)=Z(R) M$. Then M is a Φ-sharp module if and only if $\Phi(M)$ is a sharp module.

Proof. Let M be a Φ-sharp module and let $\Phi(N) \supseteq I \Phi(L)$ for nonnil submodules N, L of M and nonnil ideal I of R. Since $\operatorname{Nil}(M)$ is a divided prime submodule of M and N, L properly contain $\operatorname{Nil}(M)$, so both contain $\operatorname{Ker}(\Phi)$ by [26, Propoition 2.1]. Therefore $N \supseteq I L$ and hence $N=I^{\prime} L^{\prime}$ for a nonnil submodule $L^{\prime} \supseteq L$ of M and a nonnil ideal $I^{\prime} \supseteq I$ of R. Thus $\Phi(N)=I^{\prime} \Phi\left(L^{\prime}\right)$ for a submodule $\Phi\left(L^{\prime}\right) \supseteq \Phi(L)$ and an ideal $I^{\prime} \supseteq I$. So $\Phi(M)$ is a sharp module.

Converesly, Let $\Phi(M)$ be a sharp module and let N, L be nonnil submodules of M and I an ideal of R with $N \supseteq I L$. Thus $\Phi(N) \supseteq I \Phi(L)$ and so $\Phi(N)=I^{\prime} \Phi\left(L^{\prime}\right)$ for a submodule $\Phi\left(L^{\prime}\right) \supseteq \Phi(L)$ and an ideal $I^{\prime} \supseteq I$. By the same reason as above, we have $N=I^{\prime} L^{\prime}$ for a nonnil submodule $L^{\prime} \supseteq L$ of M and a nonnil ideal $I^{\prime} \supseteq I$ of R. Hence M is a Φ-sharp module.

Corollary 2.6. Let R be a ring and $M \in \mathbb{H}$ be a finitely generated faithful multiplication R-module with $\operatorname{Nil}(M)=Z(R) M$. The following statements are equivalent:
(1) M is a Φ-sharp module;
(2) $M / \operatorname{Nil}(M)$ is a sharp module;
(3) $\frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}$ is a sharp module;
(4) $\Phi(M)$ is a sharp module.

Proposition 2.7. Let R be a ring and $M \in \mathbb{H}$ be a finitely generated faithful multiplication R-module with $\operatorname{Nil}(M)=Z(R) M$. If M is a Φ Dedekind module, then M is a Φ-sharp module.

Proof. If M is a Φ-Dedekind module, then $M / \operatorname{Nil}(M)$ is a Dedekind module by [26, Theorem 2.10]. So, by [23, Corollary 3.5], $M / \operatorname{Nil}(M)$ is a sharp module. Therefore, by Theorem $2.2, M$ is a Φ-sharp module.

In [26] it is shown that for each prime ideal P of $R,(M / \operatorname{Nil}(M))_{P}=$ $M_{P} /(\operatorname{Nil}(M))_{P}=M_{P} / \operatorname{Nil}\left(M_{P}\right)$ and $M_{P} \in \mathbb{H}$.

Proposition 2.8. Let R be a ring and $M \in \mathbb{H}$ be a Φ-sharp module with $\mathrm{Nil}(M)=Z(R) M$. Then M_{P} is a Φ-sharp module for each prime ideal P of R.

Proof. We have $\operatorname{Nil}(R) \subseteq \operatorname{Ann}\left(\frac{M}{\operatorname{Nil}(R) M}\right)=\operatorname{Ann}\left(\frac{M}{\operatorname{Nil}(M)}\right)$. If M is a $\Phi-$ sharp module, then by Theorem $2.2, M / \operatorname{Nil}(M)$ is a sharp module. So, by
[23, Proposition 3.8], $(M / \operatorname{Nil}(M))_{P}=M_{P} / \operatorname{Nil}\left(M_{P}\right)$ is a sharp module. Therefore, by Theorem $2.2, M_{P}$ is a Φ-sharp module.

Theorem 2.9. Let R be a ring and M be a finitely generated faithful multiplication R-module. The following statements are equivalent:
(1) If $R \in \mathcal{H}$ is a ϕ-sharp ring, then M is a Φ-sharp module;
(2) If $M \in \mathbb{H}$ is a Φ-sharp module, then R is a ϕ-sharp ring.

Proof. (1) $\Rightarrow(2)$ Let $R \in \mathcal{H}$. Then, by [22, Proposition 3], $M \in \mathbb{H}$. Let R be a ϕ-sharp ring and let N, L be nonnil submodules of M and I be a nonnil ideal of R with $N \supseteq I L$. Then $\left(N:_{R} M\right),\left(L:_{R} M\right)$ are nonnil ideals of R such that $\left(N:_{R} M\right) \supseteq I\left(L:_{R} M\right)$. So $\left(N:_{R} M\right)=I^{\prime} J^{\prime}$ for nonnil ideals $I^{\prime} \supseteq I$ and $J^{\prime} \supseteq\left(L:_{R} M\right)$ of R. Thus $N=I^{\prime}\left(J^{\prime} M\right)$ for a nonnil ideal $I^{\prime} \supseteq I$ of R and a nonnil submodule $J^{\prime} M \supseteq L$ of M. Therefore M is a Φ-sharp module.
$(2) \Rightarrow(1)$ Let $M \in \mathbb{H}$. Then, by [22, Proposition 3$], R \in \mathcal{H}$. Let M be a Φ-sharp module and let I, J, K be nonnil ideals of R with $K \supseteq I J$. So $K M, J M$ are nonnil submodules of M such that $K M \supseteq I(J M)$. Thus $K M=I^{\prime} L^{\prime}$ for a nonnil ideal $I^{\prime} \supseteq I$ of R and a nonnil submodule $L^{\prime} \supseteq J M$ of M. Therefore $K=I^{\prime}\left(L^{\prime}:_{R} M\right)$ for nonnil ideals $I^{\prime} \supseteq I$ and $\left(L^{\prime}:_{R} M\right) \supseteq J$ of R. So R is a ϕ-sharp ring.

Definition 2.10. Let R be a ring and M be an R-module. Then M is said to be a Φ-pseudo-Dedekind module if the ν-closure of each nonnil submodule of M is Φ-invertible.

Theorem 2.11. Let R be a ring and $M \in \mathbb{H}$ be an R-module. Then M is a Φ-pseudo-Dedekind module if and only if $M / \operatorname{Nil}(M)$ is a pseudoDedekind module.

Proof. Let M be a Φ-pseudo-Dedekind module and $N / \operatorname{Nil}(M)$ be a nonzero submodule of $M / \operatorname{Nil}(M)$. Then N is a nonnil submodule of M and so the ν-closure of N is Φ-invertible, i.e, N_{ν} is Φ-invertible. Thus, by [24, Lemma 3.6], $(N / \operatorname{Nil}(M))_{\nu}=N_{\nu} / \operatorname{Nil}(M)$ is invertible as well.

Conversely, let $M / \operatorname{Nil}(M)$ be a pseudo-Dedekind module and N be a nonnil submodule of M. Thus $N / \operatorname{Nil}(M)$ is a nonzero submodule of $M / \operatorname{Nil}(M)$ and so $N_{\nu} / \operatorname{Nil}(M)=(N / \operatorname{Nil}(M))_{\nu}$ is invertible. So, by [24, Lemma 3.6], N_{ν} is Φ-invertible. Therefore, M is a Φ-pseudo-Dedekind module.

By Lemma 2.3, we have the following theorem.

Corollary 2.12. Let R be a ring and $M \in \mathbb{H}$ be a finitely generated faithful multiplication R-module. Then M is a Φ-pseudo-Dedekind module if and only if $\frac{\Phi(M)}{\operatorname{Nil}(\Phi(M))}$ is a pseudo-Dedekind module.

Theorem 2.13. Let R be a ring and $M \in \mathbb{H}$ be an R-module. Then M is a Φ-pseudo-Dedekind module if and only if $\Phi(M)$ is a pseudo-Dedekind module.

Proof. Let M be a Φ-pseudo-Dedekind module and $\Phi(N)$ be a submodule of $\Phi(M)$ for a nonnil submodule N of M. Thus N_{ν} is Φ-invertible. Hence $\Phi\left(N_{\nu}\right)=(\Phi(N))_{\nu}$ is invertible.

Conversely, let $\Phi(M)$ be a pseudo-Dedekind module and N be a nonnil submodule of M. Then $\Phi(N)$ is a submodule of $\Phi(M)$ and so $(\Phi(N))_{\nu}=\Phi\left(N_{\nu}\right)$ is invertible submodule of $\Phi(M)$. Therefore N_{ν} is Φ-invertible.

Corollary 2.14. Let R be a ring and $M \in \mathbb{H}$ be a finitely generated faithful multiplication R-module. The following are equivalent:
(1) M is a Φ-pseudo-Dedekind module;
(2) $M / \operatorname{Nil}(M)$ is a pseudo-Dedekind module;
(3) $\Phi(M) / \operatorname{Nil}(\Phi(M))$ is a pseudo-Dedekind module;
(4) $\Phi(M)$ is a pseudo-Dedekind module.

Theorem 2.15. Let R be a ring and M be a finitely generated faithful multiplication R-module. The following statements are equivalent:
(1) If $R \in \mathcal{H}$ is a ϕ-pseudo-Dedekind ring, then M is a Φ-pseudoDedekind module;
(2) If $M \in \mathbb{H}$ is a Φ-pseudo-Dedekind module, then R is a ϕ-pseudoDedekind ring.

Proof. Since $\operatorname{Nil}(R) \subseteq \operatorname{Ann}\left(\frac{M}{\operatorname{Nil}(R) M}\right)=\operatorname{Ann}\left(\frac{M}{\operatorname{Nil}(M)}\right)$, we have:
$(1) \Rightarrow(2)$ Let $R \in \mathcal{H}$. Then, by [22, Proposition 3], $M \in \mathbb{H}$. If R is a ϕ-pseudo-Dedekind ring, then by [25, Theorem 2.10], $\frac{R}{\operatorname{Nil}(R)}$ is a pseudoDedekind domain. So, by [23, Theorem 3.12], $\frac{M}{\operatorname{Nil}(M)}$ is a pseudo-Dedekind module. Therefore, by Theorem $2.11, M$ is a Φ-pseudo-Dedekind module.
$(2) \Rightarrow(1)$ Let $M \in \mathbb{H}$. Then, by [22, Proposition 3], $R \in \mathcal{H}$. If M is a Φ-pseudo-Dedekind module, then by Theorem 2.11, $\frac{M}{\operatorname{Nil}(M)}$ is a pseudoDedekind module. So, by [23, Theorem 3.12], $\frac{R}{\operatorname{Nil}(R)}$ is a pseudo-Dedekind domain. Therefore, by [25, Theorem 2.10], R is a ϕ-pseudo-Dedekind ring.

Proposition 2.16. Let R be a ring and $M \in \mathbb{H}$ be a finitely generated faithful multiplication R-module. If M is a Φ-sharp module, then M is a Φ-pseudo-Dedekind module.

Proof. Let M be a Φ-sharp module. Then, by Theorem $2.2, M / \operatorname{Nil}(M)$ is a sharp module. So, by [23, Lemma 3.11], $M / \operatorname{Nil}(M)$ is a pseudoDedekind module. Therefore, by Theorem $2.11, M$ is a Φ-pseudo-Dedekind module.

Recall from [26], an R-module $M \in \mathbb{H}$ is called a Φ-valuation module if for every $u \in R_{\left(\operatorname{Nil}(R):{ }_{R} M\right)}$, we have $u \Phi(M) \subseteq \Phi(M)$ or $u^{-1} \Phi(M) \subseteq \Phi(M)$; equivalently, for every $a, b \notin\left(\operatorname{Nil}(R):_{R} M\right)$, either, $a \Phi(M) \subseteq b \Phi(M)$ or $b \Phi(M) \subseteq a \Phi(M)$.

Theorem 2.17. Let R be a ring and $M \in \mathbb{H}$ be a finitely generated faithful multiplication Φ-valuation R-module. Then the following are equivalent:
(1) M is a Φ-sharp module;
(2) M is a Φ-pseudo-Dedekind module.

Proof. $(1) \Rightarrow(2)$ is given by Proposition 2.16 .
$(2) \Rightarrow(1)$ Let M is a Φ-pseudo-Dedekind module. Then, by Theorem 2.11, $M / \operatorname{Nil}(M)$ is a pseudo-Dedekind-module. Since M is a Φ valuation module, then by [26, Theorem 2.13], $M / \operatorname{Nil}(M)$ is a Valuation module. So $M / \operatorname{Nil}(M)$ is sharp module by [23, Proposition 3.14]. Therefore, by Theorem $2.11, M$ is a Φ-sharp module.

Definition 2.18. Let R be a ring and $M \in \mathbb{H}$ be an R-module. A nonnil submodule N of M is called a Φ-t-submodule of M if $\Phi(N)$ is a t-submodule of $\Phi(M)$.

It is worthwhile to note that $N / \operatorname{Nil}(M)$ is a t-submodule of $M / \operatorname{Nil}(M)$ if and only if $\Phi(N) / \operatorname{Nil}(\Phi(M))$ is a t-submodule of $\Phi(M) / \operatorname{Nil}(\Phi(M))$.

Lemma 2.19. Let R be a ring and $M \in \mathbb{H}$ be an R-module and let N be a nonnil submodule of M. Then N is a Φ-t-submodule of M if and only if $N / \operatorname{Nil}(M)$ is a t-submodule of $M / \operatorname{Nil}(M)$.

Proof. Let N be a Φ - t-submodule of M. Then $\Phi(N)$ is a t-submodule of $\Phi(M)$. Thus $\Phi(N)=\Phi(N)_{\nu} \Phi(M)$ and so

$$
\Phi(N) / \operatorname{Nil}(\Phi(M))=\left(\Phi(N)_{\nu} / \operatorname{Nil}(\Phi(M))\right)(\Phi(M) / \operatorname{Nil}(\Phi(M)))
$$

Therefore $\Phi(N) / \operatorname{Nil}(\Phi(M))$ is a t-submodule of $\Phi(M) / \operatorname{Nil}(\Phi(M))$. Hence $N / \operatorname{Nil}(M)$ is a t-submodule of $M / \operatorname{Nil}(M)$. Conversely is same.

Definition 2.20. Let R be a ring and $M \in \mathbb{H}$ be an R-module. Then M is said to be a $\Phi-T V$ module if every Φ - t-submodule is a Φ - ν-submodule.

Theorem 2.21. Let R be a ring and $M \in \mathbb{H}$ be an R-module. Then M is a $\Phi-T V$ module if and only if $M / \operatorname{Nil}(M)$ is a $T V$-module.

Proof. Let M be a $\Phi-T V$ module and $N / \operatorname{Nil}(M)$ be a t-submodule of $M / \operatorname{Nil}(M)$. Then, by Lemma $2.19, N$ a is Φ - t-submodule of M and so N is a Φ - ν-submodule of M. Hence, by [24, Lemma 3.6], $N / \operatorname{Nil}(M)$ is a ν-submodule of $M / \operatorname{Nil}(M)$. Thus $M / \operatorname{Nil}(M)$ is a $T V$-module.

Conversely, let $M / \operatorname{Nil}(M)$ be a $T V$-module and N be a Φ - t-submodule of M. Then, by Lemma $2.19, N / \operatorname{Nil}(M)$ is a t-submodule of $M / \operatorname{Nil}(M)$ and so $N / \operatorname{Nil}(M)$ is a ν-submodule of $M / \operatorname{Nil}(M)$. Therefore, by [24, Lemma 3.6], N is a Φ-t-submodule of M as well.

Corollary 2.22. Let R be a ring and $M \in \mathbb{H}$ be an R-module. Then M is a $\Phi-T V$ module if and only if $\Phi(M) / \operatorname{Nil}(\Phi(M))$ is a $T V$-module.

Theorem 2.23. Let R be a ring and $M \in \mathbb{H}$ be an R-module. Then M is a $\Phi-T V$ module if and only if $\Phi(M)$ is a TV module.

Proof. Let M be a $\Phi-T V$ module and $\Phi(N)$ be a t-submodule of $\Phi(M)$. Then N is a Φ-t-submodule of M and so N is a $\Phi-\nu$-submodule of M. Therefore, $\Phi(N)$ is a ν-submodule of $\Phi(M)$. Hence $\Phi(M)$ is a $T V$ module.

Conversely, let $\Phi(M)$ be a $T V$ module and N be a Φ-t-submodule of M. Then $\Phi(N)$ is a t-submodule of $\Phi(M)$ and so $\Phi(N)$ is a ν-submodule of $\Phi(M)$. Thus N is a $\Phi-\nu$-submodule of M. Therefore M is a $\Phi-T V$ module.

Corollary 2.24. Let R be a ring and $M \in \mathbb{H}$ be a finitely generated faithful multiplication R-module. The following are equivalent:
(1) M is a $\Phi-T V$ module;
(2) $M / \operatorname{Nil}(M)$ is a $T V$ module;
(3) $\Phi(M) / \operatorname{Nil}(\Phi(M))$ is a TV module;
(4) $\Phi(M)$ is a $T V$ module.

Theorem 2.25. Let R be a ring and M be a finitely generated faithful multiplication R-module. The following statements are equivalent:
(1) If $R \in \mathcal{H}$ is a $\phi-T V$ ring, then M is a $\Phi-T V$ module;
(2) If $M \in \mathbb{H}$ is a $\Phi-T V$ module, then R is a $\phi-T V$ ring.

Proof. By [22], [23] and [25], the proof is the same of the proof of Theorem 2.15.

The notion of a Φ-sharp- $T V$ module means that a module that is both a Φ-sharp module and a $\Phi-T V$ module.

Theorem 2.26. Let R be a ring and $M \in \mathbb{H}$ be a finitely generated faithful multiplication R-module with $\operatorname{Nil}(M)=Z(R) M$. If M is a Φ-sharp $T V$ module, then M is a Φ-Dedekind module.

Proof. Let M be a Φ-sharp $T V$ module. Then, by Theorem 2.2 and Theorem $2.21, M / \mathrm{Nil}(M)$ is a sharp $T V$ module. So, by [23, Corollary 3.21], $M / \operatorname{Nil}(M)$ is a Dedekind module. Therefore M is a Φ-Dedekind module by [26, Theorem2.10].

Theorem 2.27. Let R be a countable ring and $M \in \mathbb{H}$ be an R-module with $\operatorname{Nil}(M)=Z(R) M$. If M is a Φ-sharp module, then M is a Φ Dedekind module.

Proof. If M is a Φ-sharp module, then $M / \operatorname{Nil}(M)$ is a sharp module by Theorem 2.2. So, by [23, Theorem 3.7], R is a sharp domain and hence by [27, Corollary 17], R is a Dedekind domain. Thus $M / \operatorname{Nil}(M)$ is a Dedekind domain. Therefore, by [26, Theorem2.10], M is a Φ-Dedekind module.

References

[1] M. M. Ali, Some remarks on generalized $G C D$ domains, Comm. Algebra, 36 (2008), 142-164.
[2] M. M. Ali, Invertibility of multiplication modules П, New Zealand J. Math., 39 (2009), 45-64.
[3] M. M. Ali, Invertibility of multiplication modules $I I I$, New Zealand J. Math., 39 (2009), 139-213.
[4] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra, 36 (2008), 4620-4642.
[5] R. Ameri, On the prime submodules of multiplication modules, IJMMS, 27 (2003), 1715-1724.
[6] D. F. Anderson and A. Badawi, On ϕ-Prüfer rings and ϕ-Bezout rings, Houston J. math. 2 (2004), 331-343.
[7] D. F. Anderson and A. Badawi, On ϕ-Dedekind rings and ϕ-Krull rings, Houston J. math. 4 (2005), 1007-1022.
[8] D. F. Anderson and V. Barucci and D. D. Dobbs, Coherent Mori domain and the principal ideal theorem, Comm. Algebra 15 (1987), 1119-1156.
[9] A. Badawi, On ϕ-pseudo- valuation rings, Lecture Notes Pure Appl. Math., vol 205 (1999), 101-110, Marcel Dekker, New York/Basel.
[10] A. Badawi, On ϕ-pseudo- valuation rings $I I$, Houston J. Math. 26 (2000), 473-480.
[11] A. Badawi and Thomas G. Lucas, On ϕ-Mori rings, Houston J. math. 32 (2006), $1-32$.
[12] A. Badawi, On divided commutative rings, Comm. Algebra, 27 (1999), 1465-1474.
[13] A. Badawi, On ϕ-chained rings and ϕ-pseudo-valuation rings, Houston J. math. 27 (2001), 725-736.
[14] A. Badawi, On divided rings and ϕ-pseudo-valuation rings, International J of Commutative Rings(IJCR), 1 (2002), 51-60.
[15] A. Badawi, On nonnil-Noetherian rings, Comm. Algebra, 31 (2003), 1669-1677.
[16] A. Barnard, Multiplication modules, J. Algebra, 71 (1981), 174-178.
[17] Z. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16 (1998), 755-799.
[18] P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc, 64 (1968), 251-264.
[19] D. E. Dobbs, Divided rings and going-down, Pacific J. math. 67 (1976), 353-363.
[20] A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra, 24 (1996), 225-230.
[21] P. F. Smith, Some remarks on multiplication modules, Arch. der. Math., 50 (1988), 223-235.
[22] A. Youseffian Darani, Nonnil-Noetherian modules over commutative rings, Submitted.
[23] A. Youseffian Darani and M. Rahmatinia, On sharp modules over commutative rings, Submitted.
[24] A. Youseffian Darani and M. Rahmatinia, On Φ-Mori modules, Submitted.
[25] A. Youseffian Darani and M. Rahmatinia, On Φ-sharp rings, Submitted.
[26] A. Youseffian Darani and S. Motmaen, On Φ-Dedekind, ϕ-Prüfer and Φ-Bezout modules, Submitted.
[27] A. Zaheer, D. Teberiu and E. Mihai, A schreier domain type condition, Bull. Math. Soc. Roumania, 55(3) (2012), 241-247.

Contact information

A. Yousefian	Department of Mathematics and Applications,
Darani,	University of Mohaghegh Ardabili, P. O. Box
M. Rahmatinia	179, Ardabil, Iran
	E-Mail $(s):$ yousefian@uma.ac.ir,
	m.rahmati@uma.ac.ir

Received by the editors: 27.11.2015.

[^0]: 2010 MSC: Primary 16N99, 16S99; Secondary 06C05, 16N20.
 Key words and phrases: Φ-sharp module, Φ-pseudo-Dedekind module, Φ Dedekind module, $\Phi-T V$ module.

