Some properties of the nilradical and non-nilradical graphs over finite commutative ring \mathbb{Z}_{n}

Shalini Chandra, Om Prakash and Sheela Suthar

Communicated by M. Ya. Komarnytskyj

Abstract. Let \mathbb{Z}_{n} be the finite commutative ring of residue classes modulo n with identity and $\Gamma\left(\mathbb{Z}_{n}\right)$ be its zero-divisor graph. In this paper, we investigate some properties of nilradical graph, denoted by $N\left(\mathbb{Z}_{n}\right)$ and non-nilradical graph, denoted by $\Omega\left(\mathbb{Z}_{n}\right)$ of $\Gamma\left(\mathbb{Z}_{n}\right)$. In particular, we determine the Chromatic number and Energy of $N\left(\mathbb{Z}_{n}\right)$ and $\Omega\left(\mathbb{Z}_{n}\right)$ for a positive integer n. In addition, we have found the conditions in which $N\left(\mathbb{Z}_{n}\right)$ and $\Omega\left(\mathbb{Z}_{n}\right)$ graphs are planar. We have also given MATLAB coding of our calculations.

Introduction

The concept of zero-divisor graph was introduced by I. beck in 1988 but the most common definition of zero-divisor graph given by D. F. Anderson and P. S. Livingston in 1999 is as follows: "Let R be a commutative ring (with 1) and let $Z(R)$ be its set of zero-divisors. We associate a simple graph $\Gamma(R)$ to R with vertices $Z(R)^{*}=Z(R)-\{0\}$, the set of nonzero zero-divisors of R, and for distinct $x, y \in Z(R)^{*}$, the vertices x and y are adjacent if and only if $x y=0$. Thus, $\Gamma(R)$ is the empty graph if and only if R is an integral domain." We have derived some results for the ring \mathbb{Z}_{n}.

A complete graph is a graph (without loops and multiple edges) in which every vertex is adjacent to any other vertices of the graph. A graph in which all vertices have the same degree is said to be a regular graph. A complete bipartite graph is a graph whose vertices can be divided into

[^0]two sets such that every vertex in one set is connected to every vertex in the other, and no vertex is connected to any other vertices in the same set. A star graph is a complete bipartite graph in which at least one of the two vertex sets contains only one vertex. That one vertex is called the center of the star graph. A vertex of a graph is isolated if there is no edge incident on it. A graph is almost connected if there exists a path between any two non-isolated vertices. A proper coloring of a graph \mathbb{Z}_{n} is a function that assigns a color to each vertex such that no any two adjacent vertices have the same color. The chromatic number of \mathbb{Z}_{n}, denoted by $\chi\left(\mathbb{Z}_{n}\right)$, is the smallest number of colors required for proper coloring. A planar graph is a graph that can be embedded in the plane, i.e, it can be drawn on the plane in such a way that its edges intersect only at their endpoints and we will repeatedly use Kuratowski's theorem, which states that a graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$. The energy of a graph is the sum of absolute value of all eigenvalues of the adjacency matrix. The adjacency matrix corresponding to a zero divisor graph is defined as $A=\left[a_{i . j}\right]$, where $a_{i, j}=1$, if $v_{i} \& v_{j}$ represent zero divisor, i.e., $v_{i} . v_{j}=0$ and $a_{i, j}=0$ otherwise, where v_{i} and v_{j} are vertices of the graph.

Nilradical and non-nilradical graphs

Definition 1.1. The nilradical graph of \mathbb{Z}_{n}, denoted by $N\left(\mathbb{Z}_{n}\right)$, is the graph whose vertices are the nonzero nilpotent elements of \mathbb{Z}_{n} and any two vertices are connected by an edge if and only if their product is 0 .

Definition 1.2. The non-nilradical graph of \mathbb{Z}_{n}, denoted by $\Omega\left(\mathbb{Z}_{n}\right)$, is the graph whose vertices are the non-nilpotent zero-divisors of \mathbb{Z}_{n} and any two vertices are connected by an edge if and only if their product is 0 .

1. Chromatic number and planarity of nilradical and non-nilradical graphs

Theorem 1. If p and q are distinct prime numbers and n is a positive integer, then
(1) $\chi\left(N\left(\mathbb{Z}_{n}\right)\right)=0$ if $n=p q$;
(2) $\chi\left(N\left(\mathbb{Z}_{n}\right)\right)=p-1$ if $n=p^{2}$;
(3) $\chi\left(N\left(\mathbb{Z}_{n}\right)\right)=p q-1$ if $n=p^{2} q^{2}$;
(4) $\chi\left(N\left(\mathbb{Z}_{n}\right)\right)=p$ if $n=p^{3}$;
(5) $\chi\left(N\left(\mathbb{Z}_{n}\right)\right)=p-1$ if $n=p^{2} q$.

Proof. (1) Let $n=p q$, where p and q are distinct primes. Then $N\left(\mathbb{Z}_{n}\right)$ is an empty graph. So, there is no need of any color for coloring the graph. Hence, chromatic number is zero.
(2) Let $n=p^{2}$, where p is a prime number. If $p=2$, then $N\left(\mathbb{Z}_{n}\right)$ has only one vertex. This implies the chromatic number is one. If $p \geqslant 3$, then the number of nilpotent elements which are divisible by p^{2} are $(p-1)$. Also, these $(p-1)$ nilpotent elements form a complete graph. So, $(p-1)$ colors are required for coloring the graph and these $(p-1)$ colors are minimum in numbers. Therefore, chromatic number is $(p-1)$.
(3) Let $n=p^{2} q^{2}$, where p and q are prime numbers and $p \neq q$. Then the nilpotent elements are multiple of $p q$ and number of nilpotent elements are $p q-1$. Also, these $p q-1$ elements are connected to each other. Thus, $p q-1$ elements form a complete graph with $p q-1$ vertices. Therefore, $(p q-1)$ colors are required for coloring the graph. Hence, chromatic number of $N\left(\mathbb{Z}_{p^{2} q^{2}}\right)$ is $(p q-1)$.
(4) If $n=p^{3}$, where p is a prime number, then $N\left(\mathbb{Z}_{n}\right)$ is a complete p-partite graph with $\left(p^{2}-1\right)$ vertices. Therefore, we required p colors for proper coloring. Hence, chromatic number of $N\left(\mathbb{Z}_{n}\right)$ is p.
(5) Let $n=p^{2} q$, where p and q are distinct prime numbers. Then the nilpotent elements are multiple of $p q$, and the number of nilpotent elements are $(p-1)$. These $(p-1)$ elements are connected to each other and form a complete graph with $(p-1)$ vertices. Therefore, $(p-1)$ colors are required for coloring the graph $N\left(\mathbb{Z}_{p^{2} q}\right)$. Hence, chromatic number of $N\left(\mathbb{Z}_{p^{2} q}\right)$ is $(p-1)$.

Theorem 2. Let p and q be two distinct prime numbers and n a positive integer. Then
(1) $\chi\left(\Omega\left(\mathbb{Z}_{n}\right)\right)=m$ if $n=p_{1} p_{2} p_{3} \ldots p_{m}, m \geqslant 1$, where $p_{1}, p_{2}, \ldots, p_{m}$ are distinct primes;
(2) $\chi\left(\Omega\left(\mathbb{Z}_{n}\right)\right)=0$ if $n=p^{2}$;
(3) $\chi\left(\Omega\left(\mathbb{Z}_{n}\right)\right)=0$ if $n=p^{3}$;
(4) $\chi\left(\Omega\left(\mathbb{Z}_{n}\right)\right)=2$ if $n=p^{2} q$, for $q=2$ or 3 .

Proof. (1) Let $n=p_{1} p_{2} p_{3} \ldots p_{m}$, for some positive integer m, such that all p_{i} are distinct prime numbers. Then $\Omega\left(\mathbb{Z}_{n}\right)$ is equal to $\Gamma\left(\mathbb{Z}_{n}\right)$ and since $\Gamma\left(\mathbb{Z}_{n}\right)$ is m-partite graph, therefore $\Omega\left(\mathbb{Z}_{n}\right)$ is also m-partite graph. In this case, m distinct colors are needed for proper coloring of the graph $\Omega\left(\mathbb{Z}_{n}\right)$. Thus, Chromatic number of graph $\Omega\left(\mathbb{Z}_{n}\right)$ is m.
(2) Let $n=p^{2}$, where p is a prime number. Then clearly $\Omega\left(\mathbb{Z}_{n}\right)$ is an empty graph. Hence, there is no need of any color for coloring the graph $\Omega\left(\mathbb{Z}_{n}\right)$. Hence, chromatic number is zero.
(3) Let $n=p^{3}$, where p is a prime number. Then $\Omega\left(\mathbb{Z}_{n}\right)$ is an empty graph. Hence, there is no need of any color for coloring the graph $\Omega\left(\mathbb{Z}_{n}\right)$. So, chromatic number is zero.
(4) Let $n=p^{2} q$, where p and q are distinct prime numbers. Then multiple of p, p^{2} and q^{2} are not adjacent to themselves. But the vertices which are multiple of p^{2} are adjacent to those vertices which are multiple of q and not adjacent with multiple of p. Similarly, elements which are multiple of q are not adjacent with multiple of p. Thus, there are two disjoint sets of vertices which are adjacent from one set to other but not adjacent to each other in a set. Therefore, two colors are required for coloring the $\Omega\left(\mathbb{Z}_{n}\right)$ graph and also we can use one color from them for isolated vertices. Hence, chromatic number is two for $\Omega\left(\mathbb{Z}_{n}\right)$, when $n=p^{2} q$, where p, q are distinct prime numbers.

Theorem 3. If p and q are distinct prime numbers and n is a positive integer, then
(1) $N\left(\mathbb{Z}_{n}\right)$ is planar, where $n=p q$;
(2) $N\left(\mathbb{Z}_{n}\right)$ is planar for $p \leqslant 5$ and non-planar for $p>5$, where $n=p^{2}$;
(3) $N\left(\mathbb{Z}_{n}\right)$ is planar for $p \leqslant 5$ and q is any prime number, where $n=p^{2} q$;
(4) $N\left(\mathbb{Z}_{n}\right)$ is planar, if $p<5$ and non-planar for $p \geqslant 5$, where $n=p^{3}$;
(5) $N\left(\mathbb{Z}_{n}\right)$ is planar, where $n=4 k, \operatorname{gcd}(2, k)=1, p^{2} \not \backslash k$ for any prime p and k is any positive integer;
(6) $N\left(\mathbb{Z}_{n}\right)$ is planar, where $n=9 k, \operatorname{gcd}(3, k)=1, p^{2} \not \backslash k$ for any prime p and k is any positive integer.

Proof. (1) If $n=p q$, where p and q are distinct prime numbers, then $N\left(\mathbb{Z}_{n}\right)$ is an empty graph. Therefore, $N\left(\mathbb{Z}_{n}\right)$ graph is a planar graph.
(2) If $n=p^{2}$, where p is a prime number, then the nilpotent elements of $\left(\mathbb{Z}_{n}\right)$ are multiple of p. So, there are $(p-1)$ nilpotent elements which form a complete graph with $(p-1)$ vertices and all vertices are adjacent to each other. If $p=2$, then $N\left(\mathbb{Z}_{n}\right)$ has only one vertex and when $p=3$, then $N\left(\mathbb{Z}_{n}\right)$ has two vertices. In this case, $N\left(\mathbb{Z}_{n}\right)$ is a planar graph. If $p=5$, then $N\left(\mathbb{Z}_{n}\right)$ is a complete graph with 4 vertices and all vertices are adjacent to each other. Therefore, $N\left(\mathbb{Z}_{n}\right)$ is a planar graph.

For $p>5, N\left(\mathbb{Z}_{n}\right)$ graph contains $K_{3,3}$ or K_{5} as a proper subgraph. Hence, $N\left(\mathbb{Z}_{n}\right)$ is not a planar graph for $p>5$.
(3) If $n=p^{2} q$, where p and q are distinct prime numbers, then $N\left(\mathbb{Z}_{n}\right)$ is a complete graph with $(p-1)$ vertices. Thus, $N\left(\mathbb{Z}_{n}\right)$ is a planar graph only when $p \leqslant 5$ and q is any prime, $p \neq q$, otherwise $N\left(\mathbb{Z}_{n}\right)$ contains
K_{5} as a subgraph which is not planar and therefore $N\left(\mathbb{Z}_{n}\right)$ is a planar if $p \leqslant 5$.
(4) If $n=p^{3}$, where p is any prime, then $N\left(\mathbb{Z}_{n}\right)$ is a complete p-partite graph with $\left(p^{2}-1\right)$ vertices. Therefore, $N\left(\mathbb{Z}_{n}\right)$ is planar for $p<5$ and non-planar for $p \geqslant 5$.
(5) If $n=4 k$, and $p^{2} \not \backslash k$, for a prime p and k is any positive integer, then $N\left(\mathbb{Z}_{n}\right)$ has only one vertex, hence $N\left(\mathbb{Z}_{n}\right)$ graph is a planar graph.
(6) If $n=9 k, p^{2} \nless k$, for all prime p and k is any positive integer, then $N\left(\mathbb{Z}_{n}\right)$ has two vertices which are adjacent to each other. Thus, $N\left(\mathbb{Z}_{n}\right)$ is a planar graph.

Theorem 4. If p and q are distinct prime numbers and n is a positive integer, then
(1) $\Omega\left(\mathbb{Z}_{n}\right)$ is not planar, for $n=p q$, (specially $p \geqslant 5$ and $q \geqslant 3$);
(2) $\Omega\left(\mathbb{Z}_{n}\right)$ is planar, for $n=p^{2}$;
(3) $\Omega\left(\mathbb{Z}_{n}\right)$ is planar, for $n=p^{3}$;
(4) $\Omega\left(\mathbb{Z}_{n}\right)$ is planar for $k \leqslant 6$ and non-planar for all $k>6$, where $n=4 k, \operatorname{gcd}(2, k)=1$ and $p^{2} \wedge k$, for a prime p and k is any positive integer;
(5) $\Omega\left(\mathbb{Z}_{n}\right)$ is a planar for $k \leqslant 4$ and non-planar for $k \geqslant 5$, where $n=9 k$, $\operatorname{gcd}(3, k)=1$ and $p^{2} \not \backslash k$, for a prime p and k is any positive integer;
(6) $\Omega\left(\mathbb{Z}_{n}\right)$ is planar for $q=2$ and 3 , and p is any prime number, where $n=p^{2} q$.

Proof. (1) Let $n=p q$, such that p and q are distinct primes. Then clearly $\Omega\left(\mathbb{Z}_{n}\right)$ is a bi-partite graph. If, we take $n=p q$ where $p=2$ and q is any prime number, then $\Omega\left(\mathbb{Z}_{n}\right)$ is a star graph. We know that star graph is a planar graph. Hence, $\Omega\left(\mathbb{Z}_{n}\right)$ is a planar graph in this case. If $p=3$ and q is any prime number, then $\Omega\left(\mathbb{Z}_{n}\right)$ is a complete bi-partite graph, which is a planar graph. If $p \geqslant 5$ and q is any prime number which is greater than 3 , then $\Omega\left(\mathbb{Z}_{n}\right)$ is not a planar graph. Because, in this case, $\Omega\left(\mathbb{Z}_{n}\right)$ graph contain $K_{3,3}$ as a subgraph. Therefore, $\Omega\left(\mathbb{Z}_{n}\right)$ is not a planar graph for $n=p q$.
(2) Let $n=p^{2}$, where p is any prime number. Then, there are no non-nilpotent elements of \mathbb{Z}_{n} in $\Omega\left(\mathbb{Z}_{n}\right)$. Therefore, $\Omega\left(\mathbb{Z}_{n}\right)$ is an empty graph. Hence, $\Omega\left(\mathbb{Z}_{n}\right)$ is a planar graph.
(3) Let $n=p^{3}$, where p is any prime number. Then, there is no nonnilpotent element of \mathbb{Z}_{n} in $\Omega\left(\mathbb{Z}_{n}\right)$. Therefore, $\Omega\left(\mathbb{Z}_{n}\right)$ is an empty graph. Hence, $\Omega\left(\mathbb{Z}_{n}\right)$ is a planar graph.
(4) Let $n=4 k$, where $p^{2} \bigwedge k$, for a prime p and k is any positive integer. Then, $\Omega\left(\mathbb{Z}_{n}\right)$ is planar for $k \leqslant 6$. If we take k is any prime number,
then $\Omega\left(\mathbb{Z}_{n}\right)$ is always complete bi-partite graph. We know that complete bi-partite graph is planar graph. Therefore, $\Omega\left(\mathbb{Z}_{n}\right)$ is the planar graph for the prime k. On the other hand, if $k>6$, then $\Omega\left(\mathbb{Z}_{n}\right)$ graph contains $K_{3,3}$ or K_{5} as a subgraph. Thus, for $k>6, \Omega\left(\mathbb{Z}_{n}\right)$ graph is not a planar.
(5) Let $n=9 k$, where $p^{2} \backslash k$, for a prime p and k is any positive integer. Then $\Omega\left(\mathbb{Z}_{n}\right)$ is a planar graph for $k \leqslant 4$. For $k \geqslant 5, \Omega\left(\mathbb{Z}_{n}\right)$ graph contains $K_{3,3}$ as a subgraph. Therefore, graph is not a planar for $k \geqslant 5$.
(6) Let $n=p^{2} q$, where p and q are distinct primes. If $q=2$ and p is any prime number, then $\Omega\left(\mathbb{Z}_{n}\right)$ graph is a star graph. Therefore, $\Omega\left(\mathbb{Z}_{n}\right)$ graph is planar. If $q=3$ and p is any prime number, then $\Omega\left(\mathbb{Z}_{n}\right)$ graph is a complete bi-partite graph. Therefore, $\Omega\left(\mathbb{Z}_{n}\right)$ is planar graph. For $q \geqslant 5$ and p is any prime greater than 2 (and 3), $\Omega\left(\mathbb{Z}_{n}\right)$ graph contains $K_{3,3}$ or K_{5} as a subgraph. Thus, $\Omega\left(\mathbb{Z}_{n}\right)$ is non-planar.

Lemma 1. If $n=p q$, where p and q are primes, then there is no isolated vertex in $\Omega\left(\mathbb{Z}_{n}\right)$ graph.

Proof. If $n=p q$, where p and q are distinct primes, then $\Omega\left(\mathbb{Z}_{n}\right)$ is a complete bi-partite graph. Hence, there is no isolated vertex. When $n=p^{2}$, for any prime p, then there is no vertex in $\Omega\left(\mathbb{Z}_{n}\right)$. Hence, graph is empty. Thus, in this case again we have no isolated vertex.

Lemma 2. If $n=p^{3}$, for any prime p, then $\Omega\left(\mathbb{Z}_{n}\right)$ graph has no isolated vertex.

Proof. If $n=p^{3}$, then zero divisor graph has $p^{2}-1$ elements in which all elements are nilpotent and no element is non-nilpotent. Also all nilpotent elements are adjacent with nilpotent elements, but in $\Omega\left(\mathbb{Z}_{n}\right)$, there are no non-nilpotent elements. Thus, $\Omega\left(\mathbb{Z}_{n}\right)$ is an empty graph. Therefore, $\Omega\left(\mathbb{Z}_{n}\right)$ graph has no isolated vertex.

Observation 1. If $n=p^{2} q$, for p and q are distinct prime numbers, then $\Omega\left(\mathbb{Z}_{n}\right)$ graph has $(p-1)(q-1)$ isolated vertices.

2. Energy of nilradical and non-nilradical graphs

Theorem 5. If $n=p^{2}$, for prime p, then $E\left(N\left(\mathbb{Z}_{n}\right)\right)$ is $(2 p-4)$ and $E\left(\Omega\left(\mathbb{Z}_{n}\right)\right)$ is zero $\left(E\left(\Omega\left(\mathbb{Z}_{n}\right)\right)\right.$ is zero also for $\left.p^{3}\right)$.

Proof. When $n=p^{2}, N\left(\mathbb{Z}_{n}\right)$ is a complete graph with $p-1$ vertices. Then $f(\lambda)=\left|\lambda I_{p-1}-M\left(N\left(\mathbb{Z}_{n}\right)\right)\right|=(\lambda-1)^{p-2}(\lambda+p-2)$ by [2], where M
is a matrix of order $(p-1)$. If $f(\lambda)=0$, then $\lambda=1,2-p$. Therefore, $\sum_{i=1}^{p-1}\left|\lambda_{i}\right|=2 p-4$.

When $n=p^{2}$, then $\Omega\left(\mathbb{Z}_{n}\right)$ graph is an empty graph. Hence, it has zero energy.

When $n=p^{3}$, then $\Omega\left(\mathbb{Z}_{n}\right)$ is an empty graph and hence, it has zero energy.

Theorem 6. If $n=p q$, where p and q are distinct primes, then energy of $\Omega\left(\mathbb{Z}_{n}\right)$ is $2 \sqrt{(p-1)(q-1)}$ and energy of $N\left(\mathbb{Z}_{n}\right)$ is zero.

Proof. Let $n=p q$, where p and q are two distinct prime. Then $\Omega\left(\mathbb{Z}_{n}\right)$ is a bi-partite graph. Also, its eigen polynomial $f(\lambda)=\mid \lambda I_{p+q-2}-$ $M\left(\Omega\left(\mathbb{Z}_{n}\right)\right) \mid=(\lambda)^{p+q-4}\left(\lambda^{2}-(p-1)(q-1)\right)$, where M is a matrix of order $(p+q-2)$. Thus, nonzero eigenvalues are $\pm \sqrt{(p-1)(q-1)}$ and so $E\left(\Omega\left(\mathbb{Z}_{n}\right)\right)=2 \sqrt{(p-1)(q-1)}$. Also, $\left.N\left(\mathbb{Z}_{n}\right)\right)$ graph has no vertices for distinct primes p and q. Thus, $E\left(N\left(\mathbb{Z}_{n}\right)\right)$ has no energy.

Theorem 7. For $n=p^{2} q$, energy of $N\left(\mathbb{Z}_{n}\right)$ is $2 p-4$, for all distinct primes p and q.

Proof. Same as above Theorem (5).

Observation 2. If $n=p^{2} q$, then energy of $\Omega\left(\mathbb{Z}_{n}\right)$ is:
(1) $2 \sqrt{p q-2}$, for $p=2$ and q is any prime number;
(2) $2 \sqrt{p q+p(q-2)}$, for $p=3$ and q is any prime number;
(3) $2 \sqrt{2 p q+2 p(q-2)}$, for $p=5$ and q is any prime number.

3. Computer program

Now, we offer three algorithms for calculating energy with MATLAB software. These algorithms include several sub-algorithms. It is enough to input n. In the first algorithm at the first stage, we obtain $M\left(N\left(\mathbb{Z}_{n}\right)\right)$ and plot $N\left(\mathbb{Z}_{n}\right)$ by function nil_radical_zn2(p). At the second stage, we calculate Energy index by using energy.

In the second algorithm at the first stage, we obtain $\Omega\left(N\left(\mathbb{Z}_{n}\right)\right)$ and plot $\Omega\left(\mathbb{Z}_{n}\right)$ by function non_nil_radical_zn2(p). At the second stage, we calculate Energy index by using energy.

In third algorithm, we put the value of n and call above two functions together.

First algorithm

function $\mathrm{Nz}=$ nil_radical_zn2 (p)
n=p;
$\mathrm{M}=[]$;
for $i=1: n-1$
for $j=1: n-1$
if $\bmod (\mathrm{i} * \mathrm{i}, \mathrm{n})==0$
$\mathrm{M}=[\mathrm{M}, \mathrm{i}]$;
break;
end
end
end
M
$\mathrm{n}=$ length (M);
for $i=0: n-1$
$\operatorname{axes}(\mathrm{i}+1,:)=[\boldsymbol{\operatorname { c o s }}(2 * \mathbf{p} \mathbf{i} * \mathrm{i} / \mathrm{n}), \boldsymbol{\operatorname { s i n }}(2 * \mathbf{p} \mathbf{i} * \mathrm{i} / \mathrm{n})] ;$
end
$\mathrm{Nz}=$ zeros (n);
hold on
for $i=1$: n
plot (axes(i, 1), axes(i,2),'*')
if $\bmod \left(\mathrm{M}(\mathrm{i})^{\wedge} 2, \mathrm{p}\right)==0$
$\mathrm{Nz}(\mathrm{i}, \mathrm{i})=1$;
plot ($\operatorname{axes}(\mathrm{i}, 1), \operatorname{axes}(\mathrm{i}, 2), '$ ro' $)$
end
end
for $i=1: n-1$
for $j=i+1$: n
if $\bmod (\mathrm{M}(\mathrm{i}) * \mathrm{M}(\mathrm{j}), \mathrm{p})==0$
$\mathrm{Nz}(\mathrm{i}, \mathrm{j})=1 ; \mathrm{Nz}(\mathrm{j}, \mathrm{i})=1$;
$\operatorname{plot}(\operatorname{axes}([i, j], 1), \operatorname{axes}([i, j], 2))$;
end
end
end
eg=eig (Nz)
E=sum ($\operatorname{abs}(\mathrm{eg}))$

Second algorithm
function $N N z=$ non_nil_radical_zn2 (p)
n=p;
$\mathrm{M}=[]$;
for $i=1: n-1$
for $\mathrm{j}=1: \mathrm{n}-1$
if $\bmod (\mathrm{i} * \mathrm{j}, \mathrm{n})==0$

```
    if \(\bmod (\mathrm{i} * \mathrm{i}, \mathrm{n}) \sim=0\)
\(\mathrm{M}=[\mathrm{M}, \mathrm{i}]\);
    break;
end
end
end
end
M
\(\mathrm{n}=\) length (M);
for \(\mathrm{i}=0: \mathrm{n}-1\)
\(\operatorname{axes}(\mathrm{i}+1,:)=[\boldsymbol{\operatorname { c o s }}(2 * \mathbf{p} \mathbf{i} * \mathrm{i} / \mathrm{n}), \boldsymbol{\operatorname { s i n }}(2 * \mathbf{p} \mathbf{i} * \mathrm{i} / \mathrm{n})] ;\)
end
\(\mathrm{NNz}=\mathbf{z e r o s}(\mathrm{n})\);
hold on
for \(i=1\) :n
\(\operatorname{plot}\left(\operatorname{axes}(\mathrm{i}, 1), \operatorname{axes}(\mathrm{i}, 2),{ }^{\prime} *^{\prime}\right)\)
if \(\bmod \left(\mathrm{M}(\mathrm{i})^{\wedge} 2, \mathrm{p}\right)==0\)
\(\mathrm{NNz}(\mathrm{i}, \mathrm{i})=1\);
plot(axes(i, 1), axes(i,2),'ro')
end
end
for \(i=1: n-1\)
for \(j=i+1: n\)
if \(\bmod (\mathrm{M}(\mathrm{i}) * \mathrm{M}(\mathrm{j}), \mathrm{p})==0\)
\(\mathrm{NNz}(\mathrm{i}, \mathrm{j})=1\); \(\mathrm{NNz}(\mathrm{j}, \mathrm{i})=1\);
\(\operatorname{plot}(\operatorname{axes}([i, j], 1), \operatorname{axes}([i, j], 2))\);
end
end
end
\(\mathrm{eg}=\mathbf{e i g}(\mathrm{NNz})\)
E=sum (abs (eg))
```


Third algorithm

$\mathrm{p}=\mathrm{n}$;
Nz=nil_radical_zn2 (p)
figure;
NNz=non_nil_radical_zn2 (p)
figure;

All above algorithms are also useful for p^{3}. If we use the formula "if $\bmod \left(i^{*} \mathrm{j}, \mathrm{n}\right)==0$ " at the place of sixth line in the first algorithm, then it will give fruitful result for p^{3}.

n	$E\left(N\left(\mathbb{Z}_{n}\right)\right)$	$E\left(\Omega\left(\mathbb{Z}_{n}\right)\right)$
27	7.2111	0
45	2	9.7980
77	0	15.4919
121	18	0
225	26.00	21.9089
343	32.3110	0

TAble 1. The values of $E\left(N\left(\mathbb{Z}_{n}\right)\right)$ and $E\left(\Omega\left(\mathbb{Z}_{n}\right)\right)$ for $n=27,45,77,121,225$ and 343.

References

[1] M. R. Ahmadi and R. J. Nezhad, Energy and Wiener Index of Zero Divisor Graphs, Iranian J. Math. Chem., 2(1), 2011, pp.45-51.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, 1999, pp.434-447.
[3] I. Beck, Coloring of Commutative rings, J. Algebra, 116, 1988, pp.208-226.
[4] R. Belshoff and J. Chapman, Planar zero divisor graphs, J. Algebra, 316(1), 2007, pp.471-480.
[5] V. K. Bhat, Ravi Raina, Neeraj Nehra and Om Prakash, A Note on zero divisor graph over Rings, Int. J. Contemp. Math. Sci., 2(14), 2007, pp.667-671.
[6] A. Bishop, T. Cuchta, K. Lokken and O. Pechenik, The Nilradical and Non-Nilradical Graphs of Commutative Rings, Int. J. Algebra 2(20), 2008, pp.981-994.
[7] F. Harary, Graph Theory, First Edition, Addison-Wesley, Boston, 1969.
[8] C. Musli, Introduction to Ring and Modules, Second Edition, Narosa Publishing House, New Delhi, 1997.

Contact information

Shalini Chandra, Sheela Suthar

Department of Mathematics and Statistics, Banasthali Vidyapith,
Banasthali, Rajasthan - 304 022, India
E-Mail(s): chandrshalini@gmail.com, sheelasuthar@gmail.com
Web-page(s): www.banasthali.ac.in

Om Prakash	Department of Mathematics, IIT Patna,
Patliputra colony, Patna - 800 013, India	
	E-Mail(s): om@iitp.ac.in
	Web-page(s): www.iitp.ac.in

Received by the editors: 24.09.2015
and in final form 25.02.2016.

[^0]: 2010 MSC: 13Axx, 05Cxx, 05C15, 05C10, 65 KXX .
 Key words and phrases: commutative ring, zero-divisor graph, nilradical graph, non-nilradical graph, chromatic number, planar graph, energy of a graph.

