Type conditions of stable range for identification of qualitative generalized classes of rings

Bohdan Zabavsky

Communicated by E. I. Zelmanov

ABSTRACT. This article deals mostly with the following question: when the classical ring of quotients of a commutative ring is a ring of stable range 1? We introduce the concepts of a ring of (von Neumann) regular range 1, a ring of semihereditary range 1, a ring of regular range 1, a semihereditary local ring, a regular local ring. We find relationships between the introduced classes of rings and known ones, in particular, it is established that a commutative indecomposable almost clean ring is a regular local ring. Any commutative ring of idempotent regular range 1 is an almost clean ring. It is shown that any commutative indecomposable almost clean range 1. The classical ring of quotients of a commutative Bezout ring $Q_{Cl}(R)$ is a (von Neumann) regular local ring if and only if R is a commutative semihereditary local ring.

Throughout, all rings are assumed to be associative with unit and $1 \neq 0$. The set of nonzero divisors (also called regular elements) of R is denoted by $\mathfrak{R}(R)$, the set of units by U(R) and the set of idempotents by $\mathfrak{B}(R)$. The Jacobson radical of a ring R is denoted by J(R). The classical ring of quotients of ring R is denoted by $Q_{CL}(R)$.

A ring R is called indecomposable if $\mathfrak{B}(R) = \{0, 1\}$. A ring is called clean if every its element is the sum of a unit and idempotents, and it

²⁰¹⁰ MSC: 13F99, 06F20.

Key words and phrases: Bezout ring, Hermite ring, elementary divisor ring, semihereditary ring, regular ring, neat ring, clean ring, stable range 1.

is called almost clean if each element of a ring is the sum of a regular element and an idempotent [5]. An element a of a ring R is called (von Neumann) regular element, if axa = a for some element $x \in R$. An element a of a ring R is called a left (right) semihereditary element if Ra (aR) is projective. A ring R is a ring of stable range 1, if for any elements $a, b \in R$ such that aR + bR = R there exists an element $t \in R$ such that (a + bt)R = R. A ring R is a ring of stable range 2, if for any $a, b, c \in R$ such that aR + bR + cR = R there exist such $x, y \in R$ that (a + cx)R + (b + cy)R = R (see [6]).

Following Kaplansky [4] a commutative ring is said to be an elementary divisor ring if every matrix A over R is equivalent to a diagonal matrix, i.e. for A there exist such invertible matrices P and Q of appropriate sizes that PAQ is diagonal matrix (d_{ij}) (i.e. $d_{ij} = 0$ whenever $i \neq j$) with the property that $Rd_{i+1,i+1}R \subseteq d_{ii}R \cap Rd_{ii}$. If every 1 by 2 and 2 by 1 matrix over R is equivalent to a diagonal matrix then the ring called an Hermite ring.

Obviously, an elementary divisor ring is Hermite, and it is easy to see that an Hermite ring is Bezout ring [5]. Examples, that neither implication is revertible, are provided by Gillmann and Henriksen in [2]. We have the following result.

Theorem 1 ([6]). A commutative Bezout ring R is an Hermite ring if and only if the stable range of R is equal 2.

Contessa in [1] called a ring (von Neumann) regular local if for each $a \in R$ either a or (1 - a) is a (von Neumann) regular element.

Proposition 1. Let R be a commutative Bezout ring. If $\varphi \in \mathfrak{B}(Q_{CL}(R))$ then $\varphi \in \mathfrak{B}(R)$.

Proof. Let $\varphi \in \mathfrak{B}(Q_{CL}(R))$ and $\varphi = \frac{e}{s}$, where s is a regular element of R. Let $eR + sR = \delta R$, then $e = e_0\delta$, $s = s_0\delta$ and $eu + sv = \delta$ for some elements $e_0, s_0, u, v \in R$. Since s is a regular element, δ is a regular element as a divisor of s. Since $eu + sv = \delta$, then $\delta(e_0u + s_0v - 1) = 0$. Since $\delta \neq 0$ and δ is a regular element of R, we have $e_0u + s_0v - 1 = 0$. Then $\frac{e}{s} = \frac{e_0}{s_0}$, where $e_0R + s_0R = R$. Since $\frac{e_0}{s_0} \in \mathfrak{B}(Q_{CL}(R))$, then $e_0^2s_0 = e_0s_0^2$ and $s_0(e_0^2 - e_0s_0) = 0$. Since $s_0 \neq 0$ and so s_0 is a regular element of R as a divisor of s, we have $e_0^2 = e_0s_0$.

Since $e_0 u + s_0 v = 1$, we have $e_0^2 u + e_0 s_0 v = e_0$ and $s_0(e_0 u + s_0 v) = e_0$. Hence $\frac{e_0}{s_0} \in R$. **Proposition 2.** Let R be a commutative ring and a is a (von Neumann) regular element of R. Then a = eu, where $e \in \mathfrak{B}(R)$ and $u \in U(R)$.

Proof. Let axa = a. This implies that axax = ax, i.e. $e = ax \in \mathfrak{B}(R)$ and $e \in aR$. Since axa = a, then ea = a, i.e. $a \in eR$ and we have aR = eR.

Consider an element u = (1 - e) + a. Since u(1 - e) = 1 - e, we have uR + eR = R. We proved that eR = aR, then uR + aR = R. Since ue = ((1 - e) + a)e = ae = a, then $aR \subset uR$. Obviously, the equality uR + aR = R and inclusion $aR \subset uR$ in a commutative ring are possible if $u \in U(R)$.

Then we have ue = a.

Proposition 3. Let R be a commutative ring. Then a be a semihereditary element if and only if a = er, where $e \in \mathfrak{B}(R)$ and $r \in \mathfrak{R}(R)$.

Proof. Let $\varphi R = \{x \mid xa = 0\}$ and $\varphi \in \mathfrak{B}(R)$. Since $\varphi a = 0$, we have $(1 - \varphi)a = a$. Let $r = a - \varphi$ and rx = 0.

Since $ax = \varphi x$ and $(1 - \varphi)a = a$, we have $(1 - \varphi)ax = \varphi x$ and $(1 - \varphi)\varphi x = 0$. Then $\varphi x = 0$ and ax = 0. Since ax = 0, we have $x \in \varphi R$, i.e. $x = x\varphi$. Since $x\varphi = 0$, so x = 0. Then we see that r is a regular element of R. Since

$$r(1-\varphi) = a(1-\varphi) - \varphi(1-\varphi) = a(1-\varphi) = a_{1}$$

then $a = r(1 - \varphi)$. Put $1 - \varphi = e$, we have a = re, where $e \in \mathfrak{B}(R)$ and $r \in \mathfrak{R}(R)$. Obviously, $\{x | x(re) = 0\} = (1 - e)R$.

Definition 1. A ring R is said to have a (von Neumann) regular range 1, if for any such $a, b \in R$ that aR + bR = R, there exists $y \in R$ such that a + by is a (von Neumann) regular element of R.

Obviously, an example of ring (von Neumann) regular range 1 is a ring of stable range 1. Moreover, we have the following result.

Proposition 4. A commutative ring of (von Neumann) regular range 1 is a ring of stable range 1.

Proof. Let R be a ring of (von Neumann) regular range 1 and aR+bR = R. Then there exists an element such $y \in R$ that a+by = r is a (von Neumann) regular element of R. By Proposition 2, we have a + by = r = ek, where $e \in \mathfrak{B}(R)$ and $k \in U(R)$.

Note that, since aR + bR = R, we have eR + bR = R. Then eu + bv = 1 for some elements $u, v \in R$. Since 1 - e = (1 - e)eu + (1 - e)bv, we have 1 - e = (1 - e)bv, and e + b(1 - e)v = 1. Then ek + b(1 - e)kv = k.

Thus, we have a + bs = k for some element $s \in R$, i.e. (a + bs)R = R. We have that R is a ring of stable range 1.

Then we obtain the following result.

Theorem 2. For a commutative ring the following conditions are equivalent:

- 1) R is a ring of stable range 1;
- 2) R is a ring of (von Neumann) regular range 1.

Definition 2. A ring R is said to have a semihereditary range 1, if for any such elements $a, b \in R$ that aR + bR = R there exists such $y \in R$ that a + by is a semihereditary right element of R.

Obviously, an example of a ring of semihereditary range 1 is a ring of stable range 1 and a commutative semihereditary ring.

A special place in the class of rings of semihereditary range 1 is taken by semihereditary local rings.

Definition 3. A commutative ring R is a semihereditary local ring if for any such $a, b \in R$ that aR + bR = R, either a or b is a semihereditary element of R.

Obviously, an example of a semihereditary local ring is a (von Neumann) regular local ring and a semihereditary ring. A commutative domain (which is not a local ring) is a semihereditary local ring which is not a (von Neumann) regular local ring.

Proposition 5. A commutative semihereditary local ring is a ring of semihereditary range 1.

Proof. Let R be a commutative semihereditary local ring and aR+bR = R. If a is a semihereditary element, then representation a + b0 is as tequired. If a is not semihereditary, by condition aR + (a + b)R = R, the element a + b1 is semihereditary.

The ring \mathbb{Z}_{36} is not a semihereditary local ring, but \mathbb{Z}_{36} is a ring of semihereditary range 1 (see [1]).

Definition 4. A ring R is said to have regular range 1 if for any such $a, b \in R$ that aR + bR = R there exists such $y \in R$ that a + by is a regular element of R.

Theorem 3. For a commutative ring R the following conditions are equivalent:

- 1) R is a ring of regular range 1;
- 2) R is a ring of semihereditary range 1.

Proof. A regular element is a semihereditary element and then if R is a ring of regular range 1 then R is a ring of semihereditary range 1.

Let R be a ring of semihereditary range 1 and aR + bR = R. Then there exists such $y \in R$ that a + by = er, where $e \in \mathfrak{B}(R)$, $r \in \mathfrak{R}(R)$. Since aR + bR = R, we have eR + bR = R. Then eu + bv = 1 for some elements $u, v \in R$. Since 1 - e = (1 - e)eu + (1 - e)bv we have e + b(1 - e)v = 1and er + br(1 - e)v = r. Since a + by = er and er + br(1 - e)v = r, we have a + bs = r for some element $s \in R$. Then R is a ring of regular range 1.

Proposition 6. A classical ring of quotients $Q_{CL}(R)$ of a commutative Bezout ring R of regular range 1 is a ring of stable range 1.

Proof. Let

$$\frac{a}{s}Q_{CL}(R) + \frac{b}{s}Q_{CL}(R) = Q_{CL}(R).$$

Then au + bv = t, where $u, v \in R$ and $t \in \mathfrak{R}(R)$. Since R is a commutative Bezout ring, we have aR + bR = dR for some element $d \in R$. Then $a = a_0d$, $b = b_0d$ and ax + by = d for some elements $a_0, b_0, x, y \in R$. Since au + bv = t, we have $d(a_0u + b_0v) = t$. Then d is a regular element as the divisor of a regular element t.

Since $d(a_0x + b_0y - 1) = 0$ and $d \neq 0$, we have $a_0x + b_0y - 1 = 0$ i.e. $a_0R + b_0R = R$. Since R is a ring of regular range 1, we have $a_0 + b_0k = r$ regular element of R for some element $k \in R$. Then $a + bk = rd \in \mathfrak{R}(R)$. So we have $\frac{a}{s} + \frac{b}{s}k = \frac{rd}{s}$.

So we have $\frac{a}{s} + \frac{b}{s}k = \frac{rd}{s}$. Since $\frac{rd}{s} \in U(Q_{CL}(R))$ we have $(\frac{a}{s} + \frac{b}{s}k)Q_{CL}(R) = Q_{CL}(R)$ i.e. $Q_{CL}(R)$ is a ring of stable range 1.

Here are some examples of rings of regular range 1.

Definition 5. A commutative ring R is a regular local ring if for any $a \in R$ either a or (1 - a) is a regular element.

Proposition 7. A commutative regular local Bezout ring is a ring of stable range 2.

Proof. Let R be a regular local Bezout ring. Let a, b be nonzero elements of R. Since R is a commutative Bezout ring, we have aR + bR = dR. Then we have au + bv = d, $a = a_0d$, $b = b_0d$ for some elements $a_0, b_0, u, v \in R$.

Since $d(a_0u + b_0v - 1) = 0$, by the definition of a ring R we see that either $a_0u + b_0v$ or $a_0u + b_0v - 1$ is a regular element of R. If $a_0u + b_0v - 1$ is a regular element, by $d(a_0u + b_0v - 1) = 0$ we have d = 0, i.e. a = b = 0 but this is impossible. Let $a_0u + b_0v = r$ be a regular element of R.

Let $a_0R + b_0R = \delta R$. If $\delta \notin U(R)$ we have $a_0x + b_0y = \delta$, $a_0 = \delta a_1$, $b_0 = \delta b_1$ for some elements $a_1, b_1, x, y \in R$. This implies that $\delta(a_1u + b_1v) = a_0u + b_0v = r$. Since $r \in \mathfrak{R}(R)$, we have $\delta \in \mathfrak{R}(R)$.

This implies that $\delta(a_1x + b_1y - 1) = 0$ and, since $\delta \neq 0$, we have $a_1x + b_1y - 1 = 0$ i.e. $a_1R + b_1R = R$. Thus, we have $a = d\delta a_1$, $b = d\delta b_1$, $a_1R + b_1R = R$. By [2], R is an Hermite ring and, by Theorem 1, we obtain that R is a ring of stable range 2.

In the class of rings of regular range 1 we allocate a class of ring of idempotent regular range 1.

Proposition 8. A ring R is said to be a ring of idempotent regular range 1 if for any such elements $a, b \in R$ that aR + bR = R there exists such an idempotent $e \in \mathfrak{B}(R)$ and a regular element $r \in \mathfrak{R}(R)$ that a + be = r.

An obvious example of a ring of idempotent regular range 1 is a ring of idempotent stable range 1, i.e. a commutative clean ring.

Proposition 9. A commutative regular local ring is a ring of idempotent regular range 1.

Proof. Let R be a regular local ring and aR + bR = R. If a is a regular element, then we have a representation a + b0 = a. If a is not a regular element, so since aR + (a + b)R = R, the element a + b1 is regular. \Box

Theorem 4. A commutative semihereditary ring is a ring of idempotent regular range 1.

Proof. Let R be a commutative semihereditary ring and aR + bR = R. By [5] and Proposition 3, we have a = er where e is an idempotent and r is a regular element. Note that if e = 1, we have that a is a regular element and $a + b \cdot 0$ is a necessary representation. If $e \neq 1$, let s = a + b(1 - e). We need to show that s is a regular element of R. Let sx = 0, then ax = -b(1 - e)x. Since a = er, we have that

$$erx = (1-e)(-b)x.$$

Thus, we obtained that $e \cdot erx = e(1-e)(-b) = 0$. Since erx = exr = 0and r is a regular nonzero element, we have ex = 0 and b(1-e)x = 0, therefore bx = bex = 0. Hence we have ax = 0 and bx = 0. Since aR + bR = R we have au + bv = 1 for some elements $u, v \in R$. Then x = axu + bxv = 0 and s = a + b(1 - e) is a regular element. Thus, we have that R is a ring of idempotent regular range 1.

Consequently, we obtain a result.

Proposition 10. A commutative ring of idempotent regular range 1 is an almost clean ring.

Proof. Let R be a ring of idempotent regular range 1 and let $a \in R$ be any nonzero element $a \in R$. Then aR + (-1)R = R and a - e = r, where e is an idempotent and r is a regular element of R.

Open question: Is every commutative almost clean ring a ring of idempotent regular range 1?

Proposition 11. For a commutative ring R the following conditions are equivalent:

- 1) R is an indecomposable almost clean ring;
- 2) R is a regular local ring.

Proof. Let R be an indecomposable almost clean ring. Since 0 and 1 are all idempotents of R, we have for any a that either a or 1 - a is a regular element of R.

Let R be a regular local ring. Since for each idempotent $e \in R$ we have, that both e and 1 - e are idempotents, then we have that R is indecomposable ring. By Proposition 9, we have that R is a ring of idempotent regular range 1 and by Proposition 10, R is an almost clean ring.

By Theorem 1 and Proposition 7 we have the following result.

Theorem 5. A commutative indecomposable almost clean Bezout ring is a Hermite ring.

Proposition 12. A commutative semihereditary local ring is a ring of idempotent regular range 1.

Proof. Let R be a commutative semihereditary local ring and aR+bR = R. If a is semihereditary element then we have a representation a = er, where e is an idempotent and r is a regular element. Then we have that a+b(1-e) is a regular element by the proof of Theorem 4. If a is not a semihereditary element, then by the equality aR + (a+b)R = R, we have that a+b = er is a semihereditary element, i.e. $e^2 = e$ and $r \in \mathfrak{R}(R)$.

Since (a+b)R + (-b)R = R, the equalities a+b-b(1-e) = a+be = swe provide a necessary representation.

Theorem 6. Let R be a commutative Bezout ring. Then $Q_{CL}(R)$ is a (von Neumann) regular local ring if and only if R is a semihereditary local ring.

Proof. Let aR + bR = R, then $\frac{a}{1}Q_{CL}(R) + \frac{b}{1}Q_{CL}(R) = Q_{CL}(R)$. Since $Q_{CL}(R)$ is (von Neumann) regular local ring, either $\frac{a}{1}$ or $\frac{b}{1}$ is a (von Neumann) regular element. If $\frac{a}{1}$ is a (von Neumann) regular element, then by Proposition 2 we have that $\frac{a}{1} = eu$, where $e^2 = e \in Q_{CL}(R)$ and $u \in U(Q_{CL}(R))$. By Proposition 1, we have that $e \in R$. Then we have a = er, where r is a regular element of R. The case element $\frac{b}{1}$ is a (von Neumann) regular is similar.

Let R be a semihereditary local ring and

$$\frac{a}{s}Q_{CL}(R) + \frac{b}{s}Q_{CL}(R) = Q_{CL}(R),$$

either $\frac{a}{s} \neq 0$ or $\frac{b}{s} \neq 0$. Then au + bv = t for some elements $u, v \in R$ and t is a regular element of R. Since R is a commutative Bezout ring, then aR + bR = dR. Let $a = a_0d$, $b = b_0d$ and ax + by = d for some elements $a_0, b_0, x, y \in R$. By the equality au + bv = t, we have that $d(a_0u + b_0v) = t$. Then d is a regular element as a divisor of t. By the equality ax + by = d, we have $d(a_0x + b_0y - 1) = 0$. Since $d \neq 0$ and d is a regular element, we have $a_0x + b_0y = 1$. Hence $a_0R + b_0R = R$, so a_0 or b_0 is a semihereditary element.

If a_0 is a semihereditary element, by Proposition 3, we have $a_0 = er$, where $e^2 = e$ and r is a regular element of R. Since $a = a_0d = e(rd)$, we have $\frac{a}{s} = e\frac{rd}{s}$. Since $e^2 = e$ and $\frac{rd}{s} \in U(Q_{CL}(R))$, we get that $\frac{a}{s}$ is a (von Neumann) regular element. If b_0 is a (von Neumann) regular element, we have a similar proof. Then $Q_{CL}(R)$) is a (von Neumann) regular local ring.

Definition 6. [3] A commutative ring R is said to be additely regular if for each $a \in R$ and each regular element $b \in R$ there exists an element $u \in R$ such that a + ub is regular in R.

Proposition 13. A commutative Bezout ring of regular range 1 is additively regular. *Proof.* Let R be a commutative Bezout ring of regular range 1 and let a be any element of R and let b be any regular element of R. Since R is a commutative Bezout ring, we have aR + bR = dR, and where au + bv = d, $a = a_0d$, $b = b_0d$ for some element $u, v, a_0, b_0 \in R$. Since b is a regular element of R, we have that d is a regular element of R, since d is a divisor of b.

Since au + bv = d, we have $d(a_0u + b_0v - 1) = 0$. Hence $d \neq 0$ and we obtain that $a_0u + b_0v - 1 = 0$ i.e. $a_0R + b_0R = R$. Thus, R is a ring of regular range 1 and we obtain that $a_0 + b_0t = r$ is a regular element for some $t \in R$. Then a + bt = rd is a regular ring, i.e. R is an additively regular ring.

References

- [1] M. Contessa, On certain classes of PM-rings, Comm. Algebra 12 (1984) 1447–1469.
- [2] I. Gillman, M. Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82(2) (1956) 366–391.
- [3] R. Gilmer, J. Huckaba, Δ-Rings, J. Algebra 28 (1974) 414–432.
- [4] I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949) 464–491.
- [5] W. McGovern, Neat rings, J. Pure and Appl. Algebra 206(2) (2006) 243–258.
- [6] B.V. Zabavsky, Diagonal reduction of matrices over rings (Mathematical Studies, Monograph Series, v. XVI, VNTL Publishers, Lviv, 2012).

CONTACT INFORMATION

B. V. Zabavsky	Department of Mechanics and Mathematics,
	Ivan Franko National Univ., Lviv, Ukraine
	E-Mail(s): zabavskii@gmail.com

Received by the editors: 10.07.2017.