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Abstract. This article deals mostly with the following
question: when the classical ring of quotients of a commutative
ring is a ring of stable range 1? We introduce the concepts of a
ring of (von Neumann) regular range 1, a ring of semihereditary
range 1, a ring of regular range 1, a semihereditary local ring, a
regular local ring. We find relationships between the introduced
classes of rings and known ones, in particular, it is established that
a commutative indecomposable almost clean ring is a regular local
ring. Any commutative ring of idempotent regular range 1 is an
almost clean ring. It is shown that any commutative indecomposable
almost clean Bezout ring is an Hermite ring, any commutative
semihereditary ring is a ring of idempotent regular range 1. The
classical ring of quotients of a commutative Bezout ring QCl(R) is a
(von Neumann) regular local ring if and only if R is a commutative
semihereditary local ring.

Throughout, all rings are assumed to be associative with unit and
1 6= 0. The set of nonzero divisors (also called regular elements) of R is
denoted by R(R), the set of units by U(R) and the set of idempotents by
B(R). The Jacobson radical of a ring R is denoted by J(R). The classical
ring of quotients of ring R is denoted by QCL(R).

A ring R is called indecomposable if B(R) = {0, 1}. A ring is called
clean if every its element is the sum of a unit and idempotents, and it
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is called almost clean if each element of a ring is the sum of a regular
element and an idempotent [5]. An element a of a ring R is called (von
Neumann) regular element, if axa = a for some element x ∈ R. An
element a of a ring R is called a left (right) semihereditary element if
Ra (aR) is projective. A ring R is a ring of stable range 1, if for any
elements a, b ∈ R such that aR+ bR = R there exists an element t ∈ R
such that (a+ bt)R = R. A ring R is a ring of stable range 2, if for any
a, b, c ∈ R such that aR + bR + cR = R there exist such x, y ∈ R that
(a+ cx)R+ (b+ cy)R = R (see [6]).

Following Kaplansky [4] a commutative ring is said to be an elementary
divisor ring if every matrix A over R is equivalent to a diagonal matrix,
i.e. for A there exist such invertible matrices P and Q of appropriate sizes
that PAQ is diagonal matrix (dij) (i.e dij = 0 whenever i 6= j) with the
property that Rdi+1,i+1R ⊆ diiR∩Rdii. If every 1 by 2 and 2 by 1 matrix
over R is equivalent to a diagonal matrix then the ring called an Hermite
ring.

Obviously, an elementary divisor ring is Hermite, and it is easy to see
that an Hermite ring is Bezout ring [5]. Examples, that neither implication
is revertible, are provided by Gillmann and Henriksen in [2]. We have the
following result.

Theorem 1 ([6]). A commutative Bezout ring R is an Hermite ring if
and only if the stable range of R is equal 2.

Contessa in [1] called a ring (von Neumann) regular local if for each
a ∈ R either a or (1− a) is a (von Neumann) regular element.

Proposition 1. Let R be a commutative Bezout ring. If ϕ ∈ B(QCL(R))
then ϕ ∈ B(R).

Proof. Let ϕ ∈ B(QCL(R)) and ϕ = e
s
, where s is a regular element

of R. Let eR+ sR = δR, then e = e0δ, s = s0δ and eu+ sv = δ for some
elements e0, s0, u, v ∈ R. Since s is a regular element, δ is a regular element
as a divisor of s. Since eu + sv = δ, then δ(e0u + s0v − 1) = 0. Since
δ 6= 0 and δ is a regular element of R, we have e0u+ s0v − 1 = 0. Then
e
s
= e0

s0
, where e0R+ s0R = R. Since e0

s0
∈ B(QCL(R)), then e20s0 = e0s

2
0

and s0(e
2
0 − e0s0) = 0. Since s0 6= 0 and so s0 is a regular element of R as

a divisor of s, we have e20 = e0s0.

Since e0u+ s0v = 1, we have e20u+ e0s0v = e0 and s0(e0u+ s0v) = e0.
Hence e0

s0
∈ R.
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Proposition 2. Let R be a commutative ring and a is a (von Neumann)
regular element of R. Then a = eu, where e ∈ B(R) and u ∈ U(R).

Proof. Let axa = a. This implies that axax = ax, i.e. e = ax ∈ B(R) and
e ∈ aR. Since axa = a, then ea = a, i.e. a ∈ eR and we have aR = eR.

Consider an element u = (1 − e) + a. Since u(1 − e) = 1 − e, we
have uR+ eR = R. We proved that eR = aR, then uR+ aR = R. Since
ue = ((1 − e) + a)e = ae = a, then aR ⊂ uR. Obviously, the equality
uR+ aR = R and inclusion aR ⊂ uR in a commutative ring are possible
if u ∈ U(R).

Then we have ue = a.

Proposition 3. Let R be a commutative ring. Then a be a semihereditary
element if and only if a = er, where e ∈ B(R) and r ∈ R(R).

Proof. Let ϕR = {x | xa = 0} and ϕ ∈ B(R). Since ϕa = 0, we have
(1− ϕ)a = a. Let r = a− ϕ and rx = 0.

Since ax = ϕx and (1 − ϕ)a = a, we have (1 − ϕ)ax = ϕx and
(1− ϕ)ϕx = 0. Then ϕx = 0 and ax = 0. Since ax = 0, we have x ∈ ϕR,
i.e. x = xϕ. Since xϕ = 0, so x = 0. Then we see that r is a regular
element of R. Since

r(1− ϕ) = a(1− ϕ)− ϕ(1− ϕ) = a(1− ϕ) = a,

then a = r(1− ϕ). Put 1− ϕ = e, we have a = re, where e ∈ B(R) and
r ∈ R(R). Obviously, {x|x(re) = 0} = (1− e)R.

Definition 1. A ring R is said to have a (von Neumann) regular range 1,
if for any such a, b ∈ R that aR+ bR = R, there exists y ∈ R such that
a+ by is a (von Neumann) regular element of R.

Obviously, an example of ring (von Neumann) regular range 1 is a
ring of stable range 1. Moreover, we have the following result.

Proposition 4. A commutative ring of (von Neumann) regular range 1
is a ring of stable range 1.

Proof. Let R be a ring of (von Neumann) regular range 1 and aR+bR = R.
Then there exists an element such y ∈ R that a+by = r is a (von Neumann)
regular element of R. By Proposition 2, we have a+ by = r = ek, where
e ∈ B(R) and k ∈ U(R).

Note that, since aR+bR = R, we have eR+bR = R. Then eu+bv = 1
for some elements u, v ∈ R. Since 1− e = (1− e)eu+ (1− e)bv, we have
1− e = (1− e)bv, and e+ b(1− e)v = 1. Then ek + b(1− e)kv = k.
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Thus, we have a+ bs = k for some element s ∈ R, i.e. (a+ bs)R = R.
We have that R is a ring of stable range 1.

Then we obtain the following result.

Theorem 2. For a commutative ring the following conditions are equiva-
lent:

1) R is a ring of stable range 1;
2) R is a ring of (von Neumann) regular range 1.

Definition 2. A ring R is said to have a semihereditary range 1, if for
any such elements a, b ∈ R that aR + bR = R there exists such y ∈ R
that a+ by is a semihereditary right element of R.

Obviously, an example of a ring of semihereditary range 1 is a ring of
stable range 1 and a commutative semihereditary ring.

A special place in the class of rings of semihereditary range 1 is taken
by semihereditary local rings.

Definition 3. A commutative ring R is a semihereditary local ring if for
any such a, b ∈ R that aR + bR = R, either a or b is a semihereditary
element of R.

Obviously, an example of a semihereditary local ring is a (von Neumann)
regular local ring and a semihereditary ring. A commutative domain
(which is not a local ring) is a semihereditary local ring which is not a
(von Neumann) regular local ring.

Proposition 5. A commutative semihereditary local ring is a ring of
semihereditary range 1.

Proof. Let R be a commutative semihereditary local ring and aR+bR = R.
If a is a semihereditary element, then representation a+ b0 is as tequired.
If a is not semihereditary, by condition aR + (a+ b)R = R, the element
a+ b1 is semihereditary.

The ring Z36 is not a semihereditary local ring, but Z36 is a ring of
semihereditary range 1 (see [1]).

Definition 4. A ring R is said to have regular range 1 if for any such
a, b ∈ R that aR+ bR = R there exists such y ∈ R that a+ by is a regular
element of R.

Theorem 3. For a commutative ring R the following conditions are
equivalent:
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1) R is a ring of regular range 1;
2) R is a ring of semihereditary range 1.

Proof. A regular element is a semihereditary element and then if R is a
ring of regular range 1 then R is a ring of semihereditary range 1.

Let R be a ring of semihereditary range 1 and aR + bR = R. Then
there exists such y ∈ R that a+by = er, where e ∈ B(R), r ∈ R(R). Since
aR+ bR = R, we have eR+ bR = R. Then eu+ bv = 1 for some elements
u, v ∈ R. Since 1− e = (1− e)eu+ (1− e)bv we have e+ b(1− e)v = 1
and er + br(1− e)v = r. Since a+ by = er and er + br(1− e)v = r, we
have a + bs = r for some element s ∈ R. Then R is a ring of regular
range 1.

Proposition 6. A classical ring of quotients QCL(R) of a commutative
Bezout ring R of regular range 1 is a ring of stable range 1.

Proof. Let
a

s
QCL(R) +

b

s
QCL(R) = QCL(R).

Then au+bv = t. where u, v ∈ R and t ∈ R(R). Since R is a commutative
Bezout ring, we have aR + bR = dR for some element d ∈ R. Then
a = a0d, b = b0d and ax+ by = d for some elements a0, b0, x, y ∈ R. Since
au+ bv = t, we have d(a0u+ b0v) = t. Then d is a regular element as the
divisor of a regular element t.

Since d(a0x+ b0y − 1) = 0 and d 6= 0, we have a0x+ b0y − 1 = 0 i.e.
a0R+ b0R = R. Since R is a ring of regular range 1, we have a0 + b0k = r
regular element of R for some element k ∈ R. Then a+ bk = rd ∈ R(R).
So we have a

s
+ b

s
k = rd

s
.

Since rd
s

∈ U(QCL(R)) we have (a
s
+ b

s
k)QCL(R) = QCL(R) i.e.

QCL(R) is a ring of stable range 1.

Here are some examples of rings of regular range 1.

Definition 5. A commutative ring R is a regular local ring if for any
a ∈ R either a or (1− a) is a regular element.

Proposition 7. A commutative regular local Bezout ring is a ring of
stable range 2.

Proof. Let R be a regular local Bezout ring. Let a, b be nonzero elements
of R. Since R is a commutative Bezout ring, we have aR+ bR = dR. Then
we have au+ bv = d, a = a0d, b = b0d for some elements a0, b0, u, v ∈ R.
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Since d(a0u+ b0v− 1) = 0, by the definition of a ring R we see that either
a0u+ b0v or a0u+ b0v − 1 is a regular element of R. If a0u+ b0v − 1 is a
regular element, by d(a0u + b0v − 1) = 0 we have d = 0, i.e. a = b = 0
but this is impossible. Let a0u+ b0v = r be a regular element of R.

Let a0R + b0R = δR. If δ /∈ U(R) we have a0x + b0y = δ, a0 = δa1,
b0 = δb1 for some elements a1, b1, x, y ∈ R. This implies that δ(a1u+b1v) =
a0u+ b0v = r. Since r ∈ R(R), we have δ ∈ R(R).

This implies that δ(a1x + b1y − 1) = 0 and, since δ 6= 0, we have
a1x+ b1y − 1 = 0 i.e. a1R + b1R = R. Thus, we have a = dδa1, b = dδb1,
a1R + b1R = R. By [2], R is an Hermite ring and, by Theorem 1, we
obtain that R is a ring of stable range 2.

In the class of rings of regular range 1 we allocate a class of ring of
idempotent regular range 1.

Proposition 8. A ring R is said to be a ring of idempotent regular range 1
if for any such elements a, b ∈ R that aR+ bR = R there exists such an
idempotent e ∈ B(R) and a regular element r ∈ R(R) that a+ be = r.

An obvious example of a ring of idempotent regular range 1 is a ring
of idempotent stable range 1, i.e. a commutative clean ring.

Proposition 9. A commutative regular local ring is a ring of idempotent
regular range 1.

Proof. Let R be a regular local ring and aR+ bR = R. If a is a regular
element, then we have a representation a+ b0 = a. If a is not a regular
element, so since aR+ (a+ b)R = R, the element a+ b1 is regular.

Theorem 4. A commutative semihereditary ring is a ring of idempotent
regular range 1.

Proof. Let R be a commutative semihereditary ring and aR+ bR = R. By
[5] and Proposition 3, we have a = er where e is an idempotent and r is a
regular element. Note that if e = 1, we have that a is a regular element and
a+b ·0 is a necessary representation. If e 6= 1, let s = a+b(1−e). We need
to show that s is a regular element of R. Let sx = 0, then ax = −b(1−e)x.
Since a = er, we have that

erx = (1− e)(−b)x.

Thus, we obtained that e ·erx = e(1−e)(−b) = 0. Since erx = exr = 0
and r is a regular nonzero element, we have ex = 0 and b(1 − e)x = 0,
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therefore bx = bex = 0. Hence we have ax = 0 and bx = 0. Since
aR + bR = R we have au + bv = 1 for some elements u, v ∈ R. Then
x = axu+ bxv = 0 and s = a+ b(1− e) is a regular element. Thus, we
have that R is a ring of idempotent regular range 1.

Consequently, we obtain a result.

Proposition 10. A commutative ring of idempotent regular range 1 is
an almost clean ring.

Proof. Let R be a ring of idempotent regular range 1 and let a ∈ R be
any nonzero element a ∈ R. Then aR+ (−1)R = R and a− e = r, where
e is an idempotent and r is a regular element of R.

Open question: Is every commutative almost clean ring a ring of
idempotent regular range 1?

Proposition 11. For a commutative ring R the following conditions are
equivalent:

1) R is an indecomposable almost clean ring;
2) R is a regular local ring.

Proof. Let R be an indecomposable almost clean ring. Since 0 and 1 are
all idempotents of R, we have for any a that either a or 1− a is a regular
element of R.

Let R be a regular local ring. Since for each idempotent e ∈ R we
have, that both e and 1 − e are idempotents, then we have that R is
indecomposable ring. By Proposition 9, we have that R is a ring of
idempotent regular range 1 and by Proposition 10, R is an almost clean
ring.

By Theorem 1 and Proposition 7 we have the following result.

Theorem 5. A commutative indecomposable almost clean Bezout ring is
a Hermite ring.

Proposition 12. A commutative semihereditary local ring is a ring of
idempotent regular range 1.

Proof. Let R be a commutative semihereditary local ring and aR+bR = R.
If a is semihereditary element then we have a representation a = er, where
e is an idempotent and r is a regular element. Then we have that a+b(1−e)
is a regular element by the proof of Theorem 4. If a is not a semihereditary
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element, then by the equality aR+ (a+ b)R = R, we have that a+ b = er
is a semihereditary element, i.e. e2 = e and r ∈ R(R).

Since (a+b)R+(−b)R = R, the equalities a+b−b(1−e) = a+be = s
we provide a necessary representation.

Theorem 6. Let R be a commutative Bezout ring. Then QCL(R) is a
(von Neumann) regular local ring if and only if R is a semihereditary local
ring.

Proof. Let aR + bR = R, then a
1
QCL(R) + b

1
QCL(R) = QCL(R). Since

QCL(R) is (von Neumann) regular local ring, either a
1

or b
1

is a (von
Neumann) regular element. If a

1
is a (von Neumann) regular element,

then by Proposition 2 we have that a
1
= eu, where e2 = e ∈ QCL(R) and

u ∈ U(QCL(R)). By Proposition 1, we have that e ∈ R. Then we have
a = er, where r is a regular element of R. The case element b

1
is a (von

Neumann) regular is similar.
Let R be a semihereditary local ring and

a

s
QCL(R) +

b

s
QCL(R) = QCL(R),

either a
s
6= 0 or b

s
6= 0. Then au+ bv = t for some elements u, v ∈ R and

t is a regular element of R. Since R is a commutative Bezout ring, then
aR+ bR = dR. Let a = a0d, b = b0d and ax+ by = d for some elements
a0, b0, x, y ∈ R. By the equality au+bv = t, we have that d(a0u+b0v) = t.
Then d is a regular element as a divisor of t. By the equality ax+ by = d,
we have d(a0x+ b0y − 1) = 0. Since d 6= 0 and d is a regular element, we
have a0x+ b0y = 1. Hence a0R+ b0R = R, so a0 or b0 is a semihereditary
element.

If a0 is a semihereditary element, by Proposition 3, we have a0 = er,
where e2 = e and r is a regular element of R. Since a = a0d = e(rd),
we have a

s
= e rd

s
. Since e2 = e and rd

s
∈ U(QCL(R)), we get that a

s

is a (von Neumann) regular element. If b0 is a (von Neumann) regular
element, we have a similar proof. Then QCL(R)) is a (von Neumann)
regular local ring.

Definition 6. [3] A commutative ring R is said to be additely regular if
for each a ∈ R and each regular element b ∈ R there exists an element
u ∈ R such that a+ ub is regular in R.

Proposition 13. A commutative Bezout ring of regular range 1 is addi-
tively regular.
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Proof. Let R be a commutative Bezout ring of regular range 1 and let a
be any element of R and let b be any regular element of R. Since R is a
commutative Bezout ring, we have aR+ bR = dR, and where au+ bv = d,
a = a0d, b = b0d for some element u, v, a0, b0 ∈ R. Since b is a regular
element of R, we have that d is a regular element of R, since d is a divisor
of b.

Since au + bv = d, we have d(a0u + b0v − 1) = 0. Hence d 6= 0 and
we obtain that a0u+ b0v − 1 = 0 i.e. a0R+ b0R = R. Thus, R is a ring
of regular range 1 and we obtain that a0 + b0t = r is a regular element
for some t ∈ R. Then a+ bt = rd is a regular ring, i.e. R is an additively
regular ring.
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