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Abstract. Let G be a group, S = {Si, i ∈ I} a non empty
family of (not necessarily distinct) subgroups of infinite index in
G and M a Z2G-module. In [4] the authors defined a homological
invariant E∗(G,S,M), which is “dual” to the cohomological invari-
ant E(G,S,M), defined in [1]. In this paper we present a more
general treatment of the invariant E∗(G,S,M) obtaining results
and properties, under a homological point of view, which are dual to
those obtained by Andrade and Fanti with the invariant E(G,S,M).
We analyze, through the invariant E∗(G,S,M), properties about
groups that satisfy certain finiteness conditions such as Poincaré
duality for groups and pairs.

Introduction

Based in the theory of cohomology of groups, Andrade and Fanti
in [1], defined a cohomological invariant denoted by E(G,S,M), where
G is a group and S = {Si, i ∈ I} is a family of subgroups of G with
[G : Si] = ∞, ∀i ∈ I. Through this invariant they proved results in
duality for groups and pairs and splitting of groups (see Andrade and

∗The first author was partially supported by FAPESP, grant no. 2012/24454-8 and
the second and third authors were supported by CAPES.

2010 MSC: 20J05, 20J06, 57P10.
Key words and phrases: (co)homology of groups, duality groups, duality pairs,

homological invariant.



“adm-n2” — 2018/7/24 — 22:26 — page 178 — #16

178 On certain homological invariant

Fanti in [1], [3] and Andrade et al in [2]). In [4], Andrade and Gazon
defined a homological invariant, denoted by E∗(G,S,M), which is “dual"
to the cohomological invariant defined in [1], and they obtained results
when M = Z2. In this work we study this invariant under a more general
point of view, obtaining results about groups that satisfy certain finiteness
conditions, such as duality conditions for groups and group pairs .

The results presented in this paper provide an alternative way of
obtaining applications and properties in the duality theory of groups and
pairs of groups, working with greater emphasis in the homology of groups,
instead of cohomology.

We assume that the reader is familiar with the theory of absolute and
relative (co)homology of groups. For details see [6] and [7]. We recall here
some definitions and results which will be useful in this paper.

LetG be a group,T a subgroup ofG andM a Z2T -module. Consider the
Z2G-modules IndGT M = Z2G⊗Z2TM and CoindGT M = HomZ2T (Z2G,M)
([7], III.5). We have the following result.

Proposition 1 ([7],III.5). Let G be a group, T a subgroup of G and
M a Z2G-module. Consider the additive group Hom(Z2(G/T ),M) with
the diagonal G-action given by (g.f)(α) = g.f(g−1α), for all g ∈ G and
α ∈ Z2(G/T ). Then we have the Z2G-isomorphism

CoindGT M ≃ Hom(Z2(G/T ),M).

Definition 1. Let G be a group and M a Z2G-module. The group of
coinvariants of M , denoted by MG, is defined by MG = M/A, where
A = 〈g ·m−m; g ∈ G and m ∈M〉 is an additive subgroup of M .

Remark 1. (1) Let G be a group and M a Z2G-module. We have
H0(G;M) = MG ([7], III.1). Hence, if M is a Z2G-module with triv-
ial G-action then H0(G;M) =M .

(2) If G is a finitely generated group, S is a subgroup of G with
[G : S] = ∞ and M is a Z2S-module, then (CoindGS M)G = 0 ([7], III.5).

Proposition 2 (Proposition 1.1, [6]). Let G be a group, S = {Si, i ∈ I}
a family of subgroups of G and M a Z2G-module. Denote

⊕

i∈I H∗(Si;M)
by H∗(S;M). We have the following long exact sequence:

· · · → H1(S;M)
corG

S−−−→ H1(G;M)
J
−→ H1(G,S;M)

δ
−→

→ H0(S;M) → H0(G;M) → 0,

which is natural in the module M and the group pair (G,S). �
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Remark 2. Let (G,S) a group pair with S = {Si, i ∈ I} and M a
Z2G-module. For each i ∈ I, the corestriction map

corGSi
: H1(Si;M) −→ H1(G;M)

is induced in homology by the inclusion Si →֒ G. The map

corGS :
⊕

i∈I

H1(Si;M) −→ H1(G;M),

which appears in the long exact sequence of the Proposition 2, is defined
by:

corGS ((αi)i∈I) =
∑

i∈I

corGSi
(αi),

where (αi)i∈I ∈
⊕

i∈I H1(Si;M), with αi = 0 for almost all i, that is,
except possible finitely many i.

Now, we present the definition of E∗(G,S,M).

Definition 2. Let (G,S) be a group pair, S = {Si, i ∈ I} a family of
subgroups of G with [G : Si] = ∞, for all i ∈ I, and M a Z2G-module.
We define:

E∗(G,S,M) = 1 + dim coker(corGS ),

with coker(corGS ) = H1(G;M)/ Im(corGS ).

Consider now the category C whose objects are pairs ((G,S);M) where
G is a group, S = {Si, i ∈ I} is a family of subgroups of G and M is a
Z2G-module, and whose morphisms are maps:

ψ : ((G,S);M) −→ ((L,R = {Rj , j ∈ J});N)

consisting of
(a) a homomorphism of groups α : G −→ L;
(b) a map π : I −→ J such that α(Si) ⊂ Rπ(i);
(c) a map φ : M −→ N such that φ(g ·m) = α(g) · φ(m), i.e., φ is a

Z2G-homomorphism via α : G −→ L.
A morphism ψ is an isomorphism in C when α is an isomorphism of

groups, π is a bijection and φ is a Z2G-isomorphism.

Theorem 1. (Theorem 1, [4]) If in the category C, ((G,S);M) and
((L,R);N) are isomorphic then

E∗(G,S,M) = E∗(L,R, N),

Hence E∗(G,S,M) is an invariant in C. �
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In the following we present a characterization of the invariant
E∗(G,S,M) in terms of “partial Euler characteristic”.

Proposition 3 (Proposition 1, [4]). Let (G,S) be a group pair, with
[G : S] = ∞, ∀S ∈ S, and M a Z2G-module. If the homology groups
H0(G;M), H0(S;M) =

⊕

S∈S H0(S;M) and H1(G,S;M) have finite
dimension as Z2-vector spaces then:

E∗(G,S,M) = 1 + dimH0(G;M)− dimH0(S;M) + dimH1(G,S;M).

We introduce now some notations which will be used in this pa-
per. For the sake of simplicity, we denote the Z2G-module CoindGS Z2 =
HomZ2S(Z2G,Z2) ≃ Hom(Z2(G/S),Z2) by Z2(G/S) and, for a family
S = {Si, i ∈ I} of subgroups of G, we denote

⊕

i∈I Coind
G
Si
Z2 by

Z2(G/S). If S = {S}, we denote E∗(G,S,M) by E∗(G,S,M). The in-
variant E∗(G,S,M), when M is the particular module Z2(G/S), will be
denoted by E∗(G,S). In the particular case in which S = {S}, we denote
E∗(G,S,Z2(G/S)) by E∗(G,S).

1. Some properties of the invariant E∗(G,S,M)

In this section we present some general properties of the invariant
E∗(G,S,M). We also present some properties for the particular invariant
E∗(G,S). We begin with some remarks.

Remark 3. Let (G,S) be a group pair with S = {Si, i ∈ I} and
[G : Si] = ∞, for all i ∈ I, and let M be a Z2G-module. It is easy to see
that:

(1) If S ′ = {Sik , ik ∈ I ′ ⊆ I} is a subfamily of S, then E∗(G,S,M) 6
E∗(G,S

′,M).
(2) If S ′ = {Hi, i ∈ I} is a family of subgroups of G such that Hi 6 Si,

for all i ∈ I, then E∗(G,S,M) 6 E∗(G,S
′,M).

In particular, if H,S and T are subgroups of G satisfying H 6 S 6

T 6 G with [G : T ] = ∞ then

E∗(G, T,Z2(G/S)) 6 E∗(G,S) 6 E∗(G,H,Z2(G/S)).

Remark 4. Let G be a group, T a subgroup of G and M a Z2T -module.
We have the following maps:

(a) a canonical Z2G-monomorphism ϕ : IndGT M −→ CoindGT M defined
by

ϕ(g0 ⊗m)(g) =

{

gg0m if gg0 ∈ T
0 otherwise

,
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which is an isomorphism if [G : T ] <∞ ([7], III.5.9);
(b) a canonical Z2T -monomorphism i : M −→ IndGT M , defined by

i(m) = 1⊗m, for all m ∈M , ([7], p.67) and can be easily seen that

the isomorphism of Shapiro’s lemma H∗(T ;M)
≃

−→ H∗(G; IndGT M)
is induced by (α, i), where α : T →֒ G is the inclusion map;

(c) a canonical Z2G-isomorphism ψ : CoindGT CoindTS M −→ CoindGS M ,
where S 6 T 6 G ([7], p.64 (3.6));

(d) a Z2T -homomorphism χ : CoindTS M −→ CoindGS M , where S 6

T 6 G, given by the composition

CoindTS M
i

−→ IndGT CoindTS M
ϕ

−→ CoindGT CoindTS M
ψ

−→ CoindGS M,

i.e., χ = ψ ◦ ϕ ◦ i.

Theorem 2. Let S and T be subgroups of G with S 6 T 6 G and
M a Z2S-module. If [T : S] = ∞ and ϕ∗ : H1(G; Ind

G
T (Coind

T
S M)) →

H1(G; Coind
G
T (Coind

T
S M)) is an epimorphism, where ϕ∗ is the induced

map of the embedding ϕ : IndGT (Coind
T
S M) → CoindGT (Coind

T
S M), then

E∗(T, S,Coind
T
S M) 6 E∗(G,S,Coind

G
S M).

Proof. By considering the maps from Remark 4, we have the following
commutative diagram

H1(S; Coind
T
S M)

(idS ,χ)∗
��

corTS
// H1(T ; Coind

T
S M)

(α,χ)∗
��

H1(S; Coind
G
S M)

corGS

// H1(G; Coind
G
S M)

where the induced map (α, χ)∗ : H1(T ; Coind
T
S M) −→ H1(G; CoindGS M)

is given by (α, χ)∗ = ψ∗ ◦ ϕ∗ ◦ (α, i)∗ with ϕ∗ ≡ (id, ϕ)∗ and ψ∗ ≡
(id, ψ)∗. Since (α, i)∗ and ψ∗ are isomorphisms and ϕ∗ is an epimorphism
by hypothesis, it follows that (α, χ)∗ is an epimorphism. Furthermore,
(α, χ)∗(Im(corTS )) ⊂ Im(corGS ). In fact, by the commutative diagram,
(α, χ)∗ ◦ cor

T
S = corGS ◦(id, χ)∗. Hence,

∀y ∈ Im(corTS ) ⇒ y = corTS (x), for some x ∈ H1(S; Coind
T
S M)

⇒ (α, χ)∗(y) = (α, χ)∗(cor
T
S (x)) = corGS ◦(id, χ)∗(x) ∈ Im(corGS ).
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Then we have a well-defined map

(α, χ)∗ :
H1(T ; Coind

T
S M)

Im(corTS )
−→

H1(G; Coind
G
S M)

Im(corGS )

given by (α, χ)∗(a+ Im(corTS )) = (α, χ)∗(a) + Im(corGS ). Hence, we have
dim coker(corGS ) > dim coker(corTS ) and therefore E∗(T, S,Coind

T
S M) 6

E∗(G,S,Coind
G
S M).

The next result provides a relation between E∗(T, S) and E∗(G,S),
with S 6 T 6 G.

Corollary 1. Let S, T be subgroups of G, satisfying S 6 T 6 G, and
M = Z2 the trivial Z2G-module. If [G : S] = ∞ and [G : T ] < ∞, then
E∗(T, S) 6 E∗(G,S).

2. E∗(G,S,M) and duality

In this section, through the invariant E∗(G,S,M) we prove some
results about groups and group pairs satisfying duality conditions.

Before proving the main results, we recall some definitions about
duality due to Bieri and Eckmann (for details see [5], [6] and [7]).

Definition 3. A group G is called a duality group of dimension n, or
simply a Dn-group, if there exist a Z2G-module C, called the dualizing
module of G, and natural isomorphisms

Hk(G;M) ≃ Hn−k(G;C ⊗M)

for all integers k and all Z2G-modules M . In the special case where C = Z2,
we say that G is a Poincaré duality group of dimension n, or simply a
PDn-group.

Definition 4. A duality pair of dimension n, or simply a Dn-pair, consists
of a group pair (G,S), where S = {Si, i ∈ I} is a finite family of Dn−1-
subgroups of G, a Z2G-module C and natural isomorphisms

Hk(G;M) ≃ Hn−k(G,S;C ⊗M),

Hk(G,S;M) ≃ Hn−k(G;C ⊗M),

for all Z2G-modules M and all k ∈ Z. C is called the dualizing module of
the Dn-pair (G,S). If C = Z2 the duality pair (G,S) is called a Poincaré
duality pair, or simply a PDn-pair.
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Remark 5 ([5], [6]). (1) IfG is aDn-group, then G is finitely generated
and its cohomological dimension, cd(G), is n.

(2) If G is a Dn-group and S is subgroup of G, with [G : S] <∞, then
S is a Dn-group (with the same dualizing module).

(3) If (G,S) is a PDn-pair, then G is a Dn-group and each S ∈ S is a
PDn−1-group.

Lemma 1. Let (G,S) be a PDn-pair, with S = {Si, i = 1, . . . , r}. Then
(i) H1(G,S;

⊕r
i=1Coind

G
Si
Mi) =

⊕r
i=1(Mi)Si

, where Mi is a Z2Si-
module, for all i ∈ I. In particular, if Mi = Z2 is the trivial Z2Si-
module for i = 1, . . . , r, then H1(G,S;Z2(G/S)) =

⊕r
i=1Z2.

(ii) H1(G,S; Coind
G
S M) = MS where S is a PDn−1-subgroup of G

(which does not necessarily belong to the family S) and M is a
Z2S-module.

Proof. (i) By using Definitions 3 and 4, Remark 1 and Shapiro’s Lemma,
for (G,S) a PDn-pair, we have:

H1(G,S;
r

⊕

i=1

CoindGSi
Mi) = Hn−1(G;

r
⊕

i=1

CoindGSi
Mi)

=
r

⊕

i=1

Hn−1(G; CoindGSi
Mi) =

r
⊕

i=1

Hn−1(Si;Mi)

=
r

⊕

i=1

H0(Si;Mi) =
r

⊕

i=1

(Mi)Si
.

(ii) It is similar to (i).

Lemma 2. If G is a group and S is a subgroup of G, then (Z2(G/S))S 6= 0.
More specifically, there exists f ∈ (Z2(G/S))S such that 〈f〉 ≃ Z2.

Proof. Consider Z2(G/S) ≃ Hom(Z2(G/S),Z2) with the diagonal G-
action (see Proposition 1). Since Z2 is a trivial Z2G-module, it follows
that g · f(g−1α) = f(g−1α), for all g ∈ G and α ∈ Z2(G/S). In particular,
for α = 1 = 1 · S and s ∈ S we have

(s · f)(1) = f(s−1 · 1) = f(s−1) = f(1).

Hence,
s · f(1)− f(1) = 0, ∀f ∈ Z2(G/S), ∀s ∈ S. (∗)

Consider now the augmentation map ε : Z2(G/S) → Z2. We will show that
ε provides a non-null element ε in Z2(G/S)S = Hom(Z2(G/S),Z2)/A,
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where A = 〈sf − f | f ∈ Z2(G/S), s ∈ S〉. For this, suppose that
ε = 0 in Z2(G/S)S . Thus, ε ∈ A and there exist s1, s2, . . . , sk ∈ S and

f1, f2, . . . , fk ∈ Z2(G/S) such that

ε = (s1f1 − f1) + (s2f2 − f2) + . . .+ (skfk − fk).

Now, for 1 ∈ Z2(G/S), one has

1 = ε(1) = (s1f1 − f1) + (s2f2 − f2) + . . .+ (skfk − fk)(1)
(∗)
= 0,

which gives us a contradiction. Hence, there exists f = ε 6= 0 in Z2(G/S))S
and 〈f〉 ≃ Z2 ⊂ Z2(G/S)S .

The next result provides a necessary condition for a group pair (G,S)
to be a Poincaré duality pair (PDn-pair).

Theorem 3. Let (G,S) be a group pair with S = {Si, i = 1, . . . , r} and
[G : Si] = ∞, for all i. If E∗(G,S) > 1, then (G,S) is not a PDn-pair. In
other words, if (G,S) is a PDn-pair, then E∗(G,S) = 1.

Proof. Consider part of the exact sequence of the Proposition 2 for M =
Z2(G/S):

r
⊕

i=1

H1(Si;Z2(G/S))
corG

S−−−→ H1(G;Z2(G/S))
J
−→ H1(G,S;Z2(G/S))

δ
−→

r
⊕

i=1

H0(Si;Z2(G/S))
cor0,GS−−−−→ H0(G;Z2(G/S)) → 0.

Since (G,S) is a PDn-pair, it follows from Remark 5 that G is a Dn-
group, S is a PDn−1-subgroup and G is finitely generated. And, by using
Remark 1, we conclude that dimH0(G;Z2(G/S)) = 0. In fact

H0(G;Z2(G/S)) = H0(G;
r

⊕

i=1

Z2(G/Si)) =
r

⊕

i=1

H0(G;Z2(G/Si))

=
r

⊕

i=1

Z2(G/Si)G =
r

⊕

i=1

(CoindGSi
Z2)G = 0.

Now, it follows from Lemma 1, that H1(G,S;Z2(G/S)) =
⊕r

i=1 Z2. Thus,

dimH1(G,S;Z2(G/S)) = r. For calculating dim
⊕r

i=1H0(Si;Z2(G/S))
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observe that

r
⊕

i=1

H0(Si;Z2(G/S)) =

r
⊕

j=1

H0(Sj ;

r
⊕

i=1

Z2(G/Si))

=

r
⊕

j=1

[

H0(Sj ;Z2(G/Sj))⊕

r
⊕

i 6=j,i=1

H0(Sj ;Z2(G/Si))

]

=
r

⊕

j=1

[

(Z2(G/Sj))Sj
⊕

r
⊕

i 6=j,i=1

(Z2(G/Si))Sj

]

.

By using Lemma 2, we have that Z2 is isomorphic to a subset of
(Z2(G/Sj))Sj

, for all j = 1, . . . , r. Thereby,

r
⊕

j=1

Z2 →֒
r

⊕

j=1

(Z2(G/Sj))Sj
→֒

r
⊕

j=1

[

(Z2(G/Sj))Sj
⊕

r
⊕

i 6=j,i=1

(Z2(G/Si))Sj

]

,

and thus,

dim

r
⊕

i=1

H0(Si;Z2(G/S)) > r. (∗)

On the other hand, since H0(G;Z2(G/S)) = 0, the map δ of the exact
sequence (3.1) is surjective. It follows that,

dim
r

⊕

i=1

H0(Si;Z2(G/S)) 6 dim H1(G,S;Z2(G/S)) = r. (∗∗)

Hence, from (∗) and (∗∗), we have dim
⊕r

i=1H0(Si;Z2(G/S)) = r. There-
fore, by using Proposition 3, E∗(G,S) = 1 + 0− r + r = 1.

Example 1. Let X be a torus minus an open disc and Y the boundary
of X. We have G = π1(X) ≃ Z ∗ Z and S = π1(Y ) ≃ Z. It follows from
[6], Theorem 6.1, that the pair (G,S) is a PD2-pair and thus, by Theorem
3, E∗(G,S) = 1.. More generally, if X is a closed surface F minus k open
discs (k > 2 if F = S2) and Y = ∂X =

⋃k
i=1Yi, where Yi are the boundary

of the k-discs, consider S = {Si = π1(Yi), i = 1, . . . , k} and G = π1(X).
Then, (G,S) is a PD2-pair and, by Theorem 3, E∗(G,S) = 1.

We will see now simple computations of the particular invariant
E∗(G,S) when G and S satisfy some finiteness conditions.

Proposition 4. Let G be a PDn-group and S a subgroup of G.
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(i) If S is a PDn−1-group then E∗(G,S) 6 2.
(ii) If cdS 6 n− 2 then E∗(G,S) = 1.

Proof. Since G is PDn-group, by the hypothesis of (i) or (ii) and Remark 5,
it follows that [G : S] = ∞. Then, E∗(G,S) can be defined. Now, by using
duality and Shapiro’s Lemma, we have:

H1(G;Z2(G/S)) ≃ Hn−1(G;Z2(G/S)) ≃ Hn−1(S;Z2).

(i) If S is a PDn−1-group, then Hn−1(S;Z2) ≃ Z2 and thus,

coker(corGS ) =
H1(G;Z2(G/S))

Im(corGS )
=

Z2

Im(corGS )

can only be {0} or Z2. Therefore, E∗(G,S) 6 2.
(ii) If cdS 6 n− 2 we have Hn−1(S,Z2) = {0}. Hence coker(corGS ) =

{0} and we have E∗(G,S) = 1.

Example 2. Consider G = Z
n and S ≃ Z

r a subgroup of G with n >
r > 2. Note that G is a PDn-group and S is a PDr-group. If r = n− 1,
then E∗(G,S) 6 2 and if r 6 n− 2, then E∗(G,S) = 1.

Finally, we prove a necessary condition for (G,S) to be not a Poincaré
duality pair.

Theorem 4. If (G,S) is a group pair with [G : S] = ∞ and S a normal
subgroup of G, then (G,S) is not a Poincaré duality pair.

Proof. If (G,S) is a PDn-pair, then, by using the technique of the proof
of Theorem 3, we can prove that dimH0(S;Z2(G/S)) = 1 and thus

H0(S;Z2(G/S)) = Z2. (∗)

Since S is normal in G, the S-action on Z2(G/S) is trivial. In fact,
∀f ∈ Z2(G/S) and s ∈ S,

(s · f)(g) = f(s−1g) (diagonal action)

= f(s−1g)

= f(s−1 · g) (S normal in G)

= f(g).

Therefore, sf = f . Hence,

H0(S;Z2(G/S)) = Z2(G/S). (∗∗)

Since [G : S] = ∞ we have, from (∗) and (∗∗), a contradiction.
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