# A family of doubly stochastic matrices involving Chebyshev polynomials 

Tanbir Ahmed and José M. R. Caballero

Communicated by V. A. Artamonov

Abstract. A doubly stochastic matrix is a square matrix $A=\left(a_{i j}\right)$ of non-negative real numbers such that $\sum_{i} a_{i j}=\sum_{j} a_{i j}=1$. The Chebyshev polynomial of the first kind is defined by the recurrence relation $T_{0}(x)=1, T_{1}(x)=x$, and

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) .
$$

In this paper, we show a $2^{k} \times 2^{k}$ (for each integer $k \geqslant 1$ ) doubly stochastic matrix whose characteristic polynomial is $x^{2}-1$ times a product of irreducible Chebyshev polynomials of the first kind (upto rescaling by rational numbers).

## 1. Introduction

Chebyshev polynomial of the first kind is defined by

$$
T_{n}(x)=\cos (n \cdot \arccos (x))
$$

The fact that roots of $T_{2^{k}}(x)$ are $\cos \left(\frac{2 j-1}{2^{k+1}} \pi\right)$, for $1 \leqslant j \leqslant 2^{k}$ together with the trigonometric identity $2+2 \cos \left(\frac{\theta}{2^{k+1}}\right)=2 \pm \sqrt{2+2 \cos \left(\frac{\theta}{2^{k}}\right)}$ make $T_{2^{k}}(x)$ a remarkable subsequence. For example, Kimberling [2] used

2010 MSC: Primary 05D10.
Key words and phrases: doubly stochastic matrices, Chebyshev polynomials.
these facts in order to obtain a Gray code by means of the numbers

$$
2+c_{1} \sqrt{2+c_{2} \sqrt{2+c_{3} \sqrt{2+c_{4} \sqrt{\cdots+c_{n} \sqrt{2}}}}}
$$

where each $c_{j} \in\{-1,1\}$ and generalized this result to a wider class of polynomials. Another reason why $T_{n}(x)$ indexed by powers of 2 are special is that, as a consequence of Esenstein's irreducibility criterion, $T_{n}(x)$ is irreducible over $\mathbb{Q}[x]$ if and only if $n$ is a power of 2 . A normalized Chebyshev polynomial is a Chebyshev polynomial divided by the coefficient of its leading term. So, the leading term of a normalized Chebyshev polynomial is always 1 .

We represent the matrix in context as a self-similar structure. A self-similar algebra (see Bartholdi [1]) $(\mathfrak{A}, \psi)$ is an associative algebra $\mathfrak{A}$ endowed with a morphism of algebras $\psi: \mathfrak{A} \longrightarrow M_{d}(\mathfrak{A})$, where $M_{d}(\mathfrak{A})$ is the set of $d \times d$ matrices with coefficients from $\mathfrak{A}$. Given $s \in \mathfrak{A}$ and integers $a \geqslant 0$ and $b \geqslant 0$, the $2 \times 2$ matrix $\psi_{a, b}(s)$ is obtained using the mapping $x \mapsto\left(\begin{array}{cc}0 & x^{a} \\ y^{a} & 0\end{array}\right), \quad y \mapsto\left(\begin{array}{cc}0 & x^{b} \\ y^{b} & 0\end{array}\right)$. We write $\psi_{1,0}(s)$ as $\psi(s)$. Given a self-similar algebra $(\mathfrak{A}, \psi)$, with $\psi: \mathfrak{A} \longrightarrow M_{2}(\mathfrak{A})$, we define $\left(\mathfrak{A}, \psi^{(k)}\right)$ (for $k \geqslant 0$ ) with $\psi^{(k)}: \mathfrak{A} \longrightarrow M_{2^{k}}(\mathfrak{A})$ given by $\psi^{(0)}(s):=s$ and $\psi^{(k+1)}(s):=\left(\psi^{(k)}\left(s_{i, j}\right)\right)_{0 \leqslant i, j \leqslant 2^{k}-1}$, where $\psi(s)=\left(s_{i, j}\right)_{0 \leqslant i, j \leqslant 2^{k}-1}$. For $k \geqslant 1$, we consider the following doubly stochastic matrix

$$
\mathfrak{M}_{k}(a, b):=\left.\psi_{a, b}^{(k)}\left(\frac{1}{2} x+\frac{1}{2} y\right)\right|_{(x, y)=(1,1)} \in M_{2^{k}}(\mathbb{Q})
$$

We show that the characteristic polynomial of $\mathfrak{M}_{k}(1,0)$ is $x^{2}-1$ times a product of irreducible Chebyshev polynomials of the first kind (upto rescaling by rational numbers).

## 2. Preliminaries

In this section, we discuss some preliminaries from linear algebra. We use Newton identities for the characteristic polynomial of a matrix.

Lemma 2.1. Let $M$ and $N$ be two $k \times k$ square matrices. For each integer $n \geqslant 1$,

$$
\operatorname{tr}\left[\left(\begin{array}{cc}
M & M \\
N & N
\end{array}\right)^{n}\right]=\operatorname{tr}\left[\left(\begin{array}{cc}
N & M \\
N & M
\end{array}\right)^{n}\right]=\operatorname{tr}\left[(M+N)^{n}\right]
$$

Proof. The following identity can be checked by complete induction,

$$
\left(\begin{array}{cc}
M & M \\
N & N
\end{array}\right)^{n}=\left(\begin{array}{cc}
M(M+N)^{n-1} & M(M+N)^{n-1} \\
N(M+N)^{n-1} & N(M+N)^{n-1}
\end{array}\right)
$$

Using the properties of the trace, we conclude that

$$
\begin{aligned}
\operatorname{tr}\left[\left(\begin{array}{cc}
M & M \\
N & N
\end{array}\right)^{n}\right] & =\operatorname{tr}\left[M(M+N)^{n-1}\right]+\operatorname{tr}\left[N(M+N)^{n-1}\right] \\
& =\operatorname{tr}\left[(M+N)^{n}\right]
\end{aligned}
$$

The proof of $\operatorname{tr}\left[\left(\begin{array}{cc}N & M \\ N & M\end{array}\right)^{n}\right]=\operatorname{tr}\left[(M+N)^{n}\right]$ is analogous.
Lemma 2.2. Let $M$ and $N$ be two $k \times k$ square matrices. The characteristic polynomials of $\left(\begin{array}{cc}M & M \\ N & N\end{array}\right)$ and $\left(\begin{array}{cc}N & M \\ N & M\end{array}\right)$ are the same.

Proof. By Lemma 2.1, for all $n \geqslant 1$,

$$
\operatorname{tr}\left[\left(\begin{array}{cc}
M & M \\
N & N
\end{array}\right)^{n}\right]=\operatorname{tr}\left[\left(\begin{array}{cc}
N & M \\
N & M
\end{array}\right)^{n}\right]
$$

Using Newton identities and the fact that both matrices have the same dimensions, we derive that both matrices have the same characteristic polynomials.

Lemma 2.3. Let $M$ and $N$ be $k \times k$ square matrices. Let $p(x)$ and $q(x)$ be the characteristic polynomials of $\left(\begin{array}{cc}M & M \\ N & N\end{array}\right)$ and $M+N$, respectively. Then $p(x)=x^{k} q(x)$.

Proof. By Lemma 2.1, for all $n \geqslant 1$, $\operatorname{tr}\left[\left(\begin{array}{cc}M & M \\ N & N\end{array}\right)^{n}\right]=\operatorname{tr}\left[(M+N)^{n}\right]$. Using Newton identities, we derive that the coefficients of $p(x)$ and $q(x)$ coincide but the degree of $p(x)$ exceeds the degree of $q(x)$ by $k$. Hence, $p(x)=x^{k} q(x)$.

Lemma 2.4. Let $M$ be a $k \times k$ square matrix. Let $p(x)$ and $q(x)$ be the characteristic polynomials of $M$ and $-M$, respectively. If $\operatorname{tr}\left(M^{n}\right)=0$ for each odd non-negative integer $n$, then $p(x)$ and $q(x)$ coincide.

Proof. For each even integer $n \geqslant 0$, it follows that $\operatorname{tr}\left(M^{n}\right)=\operatorname{tr}\left((-M)^{n}\right)$. On the other hand, for any odd integer $n \geqslant 0$, we have $\operatorname{tr}\left(M^{n}\right)=$ $\operatorname{tr}\left((-M)^{n}\right)=0$, by hypothesis. So $\operatorname{tr}\left(M^{n}\right)=\operatorname{tr}\left((-M)^{n}\right)$ for any integer $n \geqslant 0$ regardless of its parity. Using Newton identities, we conclude that $p(x)$ is the same as $q(x)$.

Lemma 2.5. Let $M$ be a $k \times k$ square matrix. Let $p(x)$ and $q(x)$ be the characteristic polynomials of $M$ and $M^{2}$, respectively. If $\operatorname{tr}\left(M^{n}\right)=0$ for each odd non-negative integer $n$, then $(p(x))^{2}=q\left(x^{2}\right)$.

Proof. By hypothesis and by Lemma 2.4, we have $|x I-M|=|x I+M|$, where $I$ is the $k \times k$ identity matrix. Then,

$$
|x I-M|^{2}=|(x I-M)(x I+M)|=\left|x^{2} I-M^{2}\right|
$$

and hence $(p(x))^{2}=q\left(x^{2}\right)$.

## 3. Eigenvalues of $\mathfrak{M}_{k}(a, b)$

Proposition 3.1. For all $a \equiv b(\bmod 2)$, if $\lambda \in \mathbb{C}$ is an eigenvalue of the matrix $\mathfrak{M}_{k}(a, b)$ then either $\lambda=-1$ or $\lambda=1$.

Proof. We shall consider the following cases.
(i) If $a \equiv b \equiv 1(\bmod 2)$ then $\mathfrak{M}_{k}(a, b)$ is the exchange matrix, i.e. the matrix $J=\left(J_{i, j}\right)_{0 \leqslant i, j \leqslant 2^{k}-1}$, where

$$
J_{i, j}= \begin{cases}1 & \text { if } j=2^{k}-1-i \\ 0 & \text { if } j \neq 2^{k}-1-i\end{cases}
$$

(ii) If $a \equiv b \equiv 0(\bmod 2)$ then $\mathfrak{M}_{k}(a, b)$ is the block matrix $\left(\begin{array}{ll}I_{2^{k-1}} & 0_{2^{k-1}} \\ 0_{2^{k-1}} & I_{2^{k-1}}\end{array}\right)$. where $I_{n}$ and $0_{n}$ are the $n \times n$ identity matrix and the $n \times n$ zero matrix respectively.

In both cases, all the eigenvalues belong to the set $\{-1,1\}$.

## 4. The characteristic polynomial of $\mathfrak{M}_{k}(1,0)$

We study the structure of $\mathfrak{M}_{k}(1,0)$, which is less trivial than in the previous examples. Denote

$$
A_{k}:=\left.\psi^{(k)}(x)\right|_{(x, y)=(1,1)}, \text { and } B_{k}:=\left.\psi^{(k)}(y)\right|_{(x, y)=(1,1)}
$$

such that $\mathfrak{M}_{k}(1,0)=\frac{1}{2}\left[A_{2^{k}}+B_{2^{k}}\right]$. Note that the pair of matrices $\left(A_{2^{k}}, B_{2^{k}}\right)$ can be defined equivalently using the following recursion:

$$
\begin{gathered}
A_{1}=B_{1}=(1)_{1 \times 1}, \quad A_{2^{k+1}}=\left(\begin{array}{cc}
0_{2^{k}} & A_{2^{k}} \\
B_{2^{k}} & 0_{2^{k}}
\end{array}\right)_{2^{k+1} \times 2^{k+1}} \\
B_{2^{k+1}}=\left(\begin{array}{cc}
0_{2^{k}} & I_{2^{k}} \\
I_{2^{k}} & 0_{2^{k}}
\end{array}\right)_{2^{k+1} \times 2^{k+1}}
\end{gathered}
$$

where $0_{2^{k}}$ and $I_{2^{k}}$ are respectively the $2^{k} \times 2^{k}$ zero and identity matrices.
Lemma 4.1. For each integer $k \geqslant 2, \mathfrak{M}_{k}(1,0)^{2}=\left(\begin{array}{cc}P_{2^{k-1}} & 0_{2^{k-1}} \\ 0_{2^{k-1}} & Q_{2^{k-1}}\end{array}\right)$, where

$$
\begin{aligned}
P_{2^{k-1}} & =\frac{1}{4}\left(\begin{array}{ll}
A_{2^{k-2}}+I_{2^{k-2}} & A_{2^{k-2}}+I_{2^{k-2}} \\
B_{2^{k-2}}+I_{2^{k-2}} & B_{2^{k-2}}+I_{2^{k-2}}
\end{array}\right) \\
Q_{2^{k-1}} & =\frac{1}{4}\left(\begin{array}{ll}
B_{2^{k-2}}+I_{2^{k-2}} & A_{2^{k-2}}+I_{2^{k-2}} \\
B_{2^{k-2}}+I_{2^{k-2}} & A_{2^{k-2}}+I_{2^{k-2}}
\end{array}\right)
\end{aligned}
$$

Proof. It follows from the identity:

$$
\begin{aligned}
& {\left[\mathfrak{M}_{k}(1,0)\right]^{2}=\left(\begin{array}{cc}
0_{2^{k-1}} & \frac{1}{2}\left(A_{2^{k-1}}+I_{2^{k-1}}\right) \\
\frac{1}{2}\left(B_{2^{k-1}}+I_{2^{k-1}}\right) & 0_{2^{k-1}}
\end{array}\right)^{2}} \\
& \quad=\frac{1}{4}\left(\begin{array}{ccc}
\left(A_{2^{k-1}}+I_{2^{k-1}}\right)\left(B_{2^{k-1}}+I_{2^{k-1}}\right) & \left(B_{2^{k-1}}+I_{2^{k-1}}\right)\left(A_{2^{k-1}}+I_{2^{k-1}}\right)
\end{array}\right) \\
& \quad 0_{2^{k-1}} \\
& \quad=\frac{1}{4}\left(\begin{array}{cccc}
A_{2^{k-2}}+I_{2^{k-2}} & A_{2^{k-2}}+I_{2^{k-2}} & 0_{2^{k-2}} & 0_{2^{k-2}} \\
B_{2^{k-2}}+I_{2^{k-2}} & B_{2^{k-2}}+I_{2^{k-2}} & 0_{2^{k-2}} & 0_{2^{k-2}} \\
\hline 0_{2^{k-2}} & 0_{2^{k-2}} & B_{2^{k-2}}+I_{2^{k-2}} & A_{2^{k-2}}+I_{2^{k-2}} \\
0_{2^{k-2}} & 0_{2^{k-2}} & B_{2^{k-2}}+I_{2^{k-2}} & A_{2^{k-2}}+I_{2^{k-2}}
\end{array}\right) .
\end{aligned}
$$

Lemma 4.2. Given positive integer $k \geqslant 2$, let $p(x)$ and $q(x)$ be the characteristics polynomials of

$$
\left[\frac{1}{2}\left(A_{2^{k}}+B_{2^{k}}\right)\right]^{2} \text { and } \frac{1}{4}\left(A_{2^{k-2}}+B_{2^{k-2}}+2 I_{2^{k-2}}\right)
$$

respectively. Then $p(x)=\left(x^{2^{k-2}} q(x)\right)^{2}$.
Proof. By Lemma 4.1, the characteristics polynomial of $\left[\mathfrak{M}_{k}(1,0)\right]^{2}$ is the product of the characteristic polynomials of $P_{2^{k-1}}$ and $Q_{2^{k-1}}$. By Lemma 2.2, $P_{2^{k-1}}$ and $Q_{2^{k-1}}$ have the same characteristic polynomials. By Lemma 2.3, the characteristic polynomial of $P_{2^{k-1}}$ is $x^{2^{k-2}}$ times the
characteristic polynomial of $\frac{1}{4}\left(A_{2^{k-2}}+B_{2^{k-2}}+2 I_{2^{k-2}}\right)$. Hence, $p(x)=$ $\left(x^{2^{k-2}} q(x)\right)^{2}$.

Let the characteristic polynomial of $\mathfrak{M}_{k}(1,0)$ be denoted by $\mathcal{C}_{k}(x)$ such that

$$
\mathcal{C}_{k}(x):=\left|x I_{2^{k}}-\mathfrak{M}_{k}(1,0)\right|
$$

Lemma 4.3. Given positive integer $k \geqslant 2$, the polynomial $\mathcal{C}_{k}(x)$ satisfies the following recurrence relation

$$
\mathcal{C}_{k}(x)=\frac{x^{2^{k-1}}}{2^{2^{k-2}}} \mathcal{C}_{k-2}\left(2 x^{2}-1\right)
$$

Proof. We have

$$
\begin{aligned}
{\left[\mathcal{C}_{k}(x)\right]^{2}=} & \left|x I_{2^{k}}-\left[\mathfrak{M}_{k}(1,0)\right]\right|^{2} \\
= & \left|x^{2} I_{2^{k}}-\left[\mathfrak{M}_{k}(1,0)\right]^{2}\right|,(\text { by Lemma 2.5 }) \\
= & \left(\left(x^{2}\right)^{2^{k-2}}\left|x^{2} I_{2^{k-2}}-\frac{1}{4}\left(A_{2^{k-2}}+B_{2^{k-2}}+2 I_{2^{k-2}}\right)\right|\right)^{2} \\
& (\text { by Lemma 4.2) } \\
= & \left(x^{2^{k-1}}\left|\frac{1}{2}\left(2 x^{2} I_{2^{k-2}}-\frac{1}{2}\left(A_{2^{k-2}}+B_{2^{k-2}}+2 I_{2^{k-2}}\right)\right)\right|\right)^{2} \\
= & \left(\frac{x^{2^{k-1}}}{2^{2^{k-2}}}\left|\left(2 x^{2}-1\right) I_{2^{k-2}}-\frac{1}{2}\left(A_{2^{k-2}}+B_{2^{k-2}}\right)\right|\right)^{2}
\end{aligned}
$$

Using the fact that the characteristic polynomial has leading coefficient 1 in our definition, we conclude that

$$
\left|x I_{2^{k}}-\left[\mathfrak{M}_{k}(1,0)\right]\right|=\frac{x^{2^{k-1}}}{2^{2^{k-2}}}\left|\left(2 x^{2}-1\right) I_{2^{k-2}}-\frac{1}{2}\left(A_{2^{k-2}}+B_{2^{k-2}}\right)\right|
$$

Therefore, $\mathcal{C}_{k}(x)=\frac{x^{2^{k-1}}}{2^{2^{k-2}}} \mathcal{C}_{k-2}\left(2 x^{2}-1\right)$.
Example 4.1. The matrices $\mathfrak{M}_{1}(1,0), \mathfrak{M}_{2}(1,0)$, and $\mathfrak{M}_{3}(1,0)$ are

$$
\mathfrak{M}_{1}(1,0)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \mathfrak{M}_{2}(1,0)=\left(\begin{array}{cccc}
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0
\end{array}\right)
$$

$$
\mathfrak{M}_{3}(1,0)=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right)
$$

Example 4.2. The first values of $\mathcal{C}_{k}(\lambda)$ are

$$
\begin{aligned}
\mathcal{C}_{2}(\lambda)= & \left(\lambda^{2}-1\right) \cdot \lambda^{2} \\
\mathcal{C}_{3}(\lambda)= & \left(\lambda^{2}-1\right) \cdot \lambda^{6} \\
\mathcal{C}_{4}(\lambda)= & \left(\lambda^{2}-1\right) \cdot \lambda^{10} \cdot\left(\lambda^{2}-\frac{1}{2}\right)^{2} \\
\mathcal{C}_{5}(\lambda)= & \left(\lambda^{2}-1\right) \cdot \lambda^{18} \cdot\left(\lambda^{2}-\frac{1}{2}\right)^{6}, \\
\mathcal{C}_{6}(\lambda)= & \left(\lambda^{2}-1\right) \cdot \lambda^{34} \cdot\left(\lambda^{2}-\frac{1}{2}\right)^{10} \cdot\left(\lambda^{4}-x^{2}+\frac{1}{8}\right)^{2} \\
\mathcal{C}_{7}(\lambda)= & \left(\lambda^{2}-1\right) \cdot \lambda^{66} \cdot\left(\lambda^{2}-\frac{1}{2}\right)^{18} \cdot\left(\lambda^{4}-\lambda^{2}+\frac{1}{8}\right)^{6} \\
\mathcal{C}_{8}(\lambda)= & \left(\lambda^{2}-1\right) \cdot \lambda^{130} \cdot\left(\lambda^{2}-\frac{1}{2}\right)^{34} \cdot\left(\lambda^{4}-\lambda^{2}+\frac{1}{8}\right)^{10} \\
& \cdot\left(\lambda^{8}-2 \lambda^{6}+\frac{5}{4} \lambda^{4}-\frac{1}{4} \lambda^{2}+\frac{1}{128}\right)^{2}
\end{aligned}
$$

## 5. A monoid generated by the irreducible Chebyshev polynomials of the first kind

The commutative monoid, generated by $T_{2}(x)=2 x^{2}-1$ with composition (superposition) of polynomials as the binary operation, will be denoted by $\mathfrak{T}_{\circ} \subseteq \mathbb{Q}[x]$. We will use the notation $T_{1}(x)=x$ and $T_{2^{r+1}}(x)=T_{2^{r}}\left(T_{2}(x)\right)$ for the elements of $\mathfrak{T}_{\circ}$. Let $\mathfrak{T} \subseteq \mathbb{Q}[x]$ be the commutative monoid generated by the rational numbers and the elements from $\mathfrak{T}_{0}$, with the ordinary polynomial product as binary operation. For each $T_{2^{r}}(x) \in \mathfrak{T}_{0}$, the application $\mathfrak{T} \rightarrow \mathfrak{T}$ given by $p(x) \mapsto p\left(T_{2^{r}}(x)\right)$ is a well-defined commutative monoid morphism.

Theorem 5.1. Given positive integer $k$, the characteristic polynomial of $\mathfrak{M}_{k}(1,0)$ is equal to $x^{2}-1$ times an element from $\mathfrak{T}$.

Proof. We proceed by induction on $k \geqslant 1$. The result is true for $k=1$ and $k=2$ by direct computation,

$$
\mathcal{C}_{1}(x)=x^{2}-1, \quad \mathcal{C}_{2}(x)=\left(x^{2}-1\right)\left(T_{1}(x)\right)^{2}
$$

Let $k=m$ for some $m \geqslant 3$. Suppose that $\mathcal{C}_{m-2}(x)=\left(x^{2}-1\right) p(x)$ for some $p(x) \in \mathfrak{T}$. By Lemma 4.3,

$$
\mathcal{C}_{m}(x)=\frac{x^{2^{m-1}}}{2^{2^{m-2}}} \mathcal{C}_{m-2}\left(2 x^{2}-1\right)
$$

which implies

$$
\mathcal{C}_{m}(x)=\frac{\left(T_{1}(x)\right)^{2^{m-1}}}{2^{2^{m-2}}}\left(\left(2 x^{2}-1\right)^{2}-1\right) p\left(2 x^{2}-1\right)
$$

$\operatorname{Using} p\left(2 x^{2}-1\right)=p\left(T_{2}(x)\right) \in \mathfrak{T}$ and $\left(\left(2 x^{2}-1\right)^{2}-1\right)=4\left(T_{1}(x)\right)^{2}\left(x^{2}-1\right)$, we conclude $\mathcal{C}_{m}(x) /\left(x^{2}-1\right) \in \mathfrak{T}$. Therefore, the result is true for all $k \geqslant 1$ by induction.

Corollary 5.1. For $k \geqslant 0$, the matrix $2 \mathfrak{M}_{k}(1,0)$ is nilpotent $\bmod 2$, i.e. for some integer $N \geqslant 0$, all the entries of $\left(2 \mathfrak{M}_{k}(1,0)\right)^{N}$ are even integers.

Proof. By Theorem 5.1, we have

$$
\left|x I_{2^{k}}-\mathfrak{M}_{k}(1,0)\right|=\rho \cdot\left(x^{2}-1\right) T_{2^{r_{1}}}(x) T_{2^{r_{2}}}(x) T_{2^{r_{3}}}(x) \cdots T_{2^{r_{h}}}(x)
$$

where $r_{1}, r_{2}, \ldots, r_{h}$ are some nonnegative integer and $\rho$ is a positive rational number. Substituting $x$ by $x / 2$ in the above equation, we obtain $\left|x I_{2^{k}}-2 \mathfrak{M}_{k}(1,0)\right|=$

$$
2^{2^{k}-h-2} \rho \cdot\left(x^{2}-4\right) T_{2^{r_{1}}}\left(\frac{x}{2}\right) T_{2^{r_{2}}}\left(\frac{x}{2}\right) T_{2^{r_{3}}}\left(\frac{x}{2}\right) \cdots T_{2^{r_{h}}}\left(\frac{x}{2}\right)
$$

Each polynomial $2 T_{2^{r} j}$ for $j=1,2, \ldots, h$ has leading coefficient 1 and the characteristic polynomial of $2 \mathfrak{M}_{k}(1,0)$ has leading coefficient 1 too. Hence, $2^{2^{k}-h-2} \rho=1$.

We claim that the non-leading coefficients in $T_{2^{r}}$ for $j=1,2, \ldots, h$ are even integers. Indeed, $2 T_{2^{0}}\left(\frac{x}{2}\right)=x$ satisfies this claim. If $2 T_{2^{r}}\left(\frac{x}{2}\right)$ satisfies the claim, then

$$
2 T_{2^{r+1}}\left(\frac{x}{2}\right)=2 T_{2^{r}}\left(T_{2}\left(\frac{x}{2}\right)\right)=2 T_{2^{r}}\left(2\left(\frac{x}{2}\right)^{2}-1\right)=2 T_{2^{r}}\left(\frac{x^{2}-2}{2}\right)
$$

also satisfies the claim. The claim follows by induction.

After reducing the entries of $2 \mathfrak{M}_{k}(1,0)$ to $\mathbb{Z} / 2 \mathbb{Z}$, we obtain that its characteristic polynomial is $x^{2^{k}}$. Therefore, the matrix $2 \mathfrak{M}_{k}(1,0)$ is nilpotent in $\mathbb{F}_{2}$.

Example 5.1. The 15 th power of $2 \mathfrak{M}_{10}(a, b)$ for $(a, b)=(1,0)$ and $(a, b)=(1,2)$ are represented ${ }^{1}$ in Figure 1 and Figure 2, respectively. The odd entries correspond to the black points and the even entries, to the white points.


Figure 1. Representation of $\left(2 \mathfrak{M}_{10}(1,0)\right)^{15}$.


Figure 2. Representation of $\left(2 \mathfrak{M}_{10}(1,2)\right)^{15}$.

[^0]The following common property seem to be true because of the empirical evidences.

Conjecture 5.1. For $a \geqslant 0, b \geqslant 0$, and $k \geqslant 0$, the matrix $2 \mathfrak{M}_{k}(a, b)$ is nilpotent $\bmod 2$, i.e. for some integer $N \geqslant 0$, all the entries of $\left(2 \mathfrak{M}_{k}(a, b)\right)^{N}$ are even integers.

## References

[1] Bartholdi, L. (2010). Self-similar lie algebras. arXiv preprint arXiv:1003.1125.
[2] Kimberling C., Polynomials defined by a second order recurrence, interlacing zeros, and gray codes, Fibonacci Quarterly, 48 (3) (2010).

## Contact information

$\begin{array}{ll}\text { T. Ahmed, } & \text { LaCIM, UQÁM, Montréal, Canada } \\ \text { J. M. R. Caballero } & E-M a i l(s) \text { : tanbir@gmail.com, } \\ & \text { josephcmac@gmail.com } \\ & \text { Web-page }(s) \text { : www.lacim.quam.ca/~tanbir }\end{array}$
Received by the editors: 25.10.2017
and in final form 29.12.2017.


[^0]:    ${ }^{1}$ These pictures were obtained in SageMath using a program created by the authors.

