On cospectral signed digraphs

M. A. Bhat, T. A. Naikoo, and S. Pirzada

Communicated by D. Simson

Abstract. The set of distinct eigenvalues of a signed digraph S together with their respective multiplicities is called its spectrum. Two signed digraphs of same order are said to be cospectral if they have the same spectrum. In this paper, we show the existence of integral, real and Gaussian cospectral signed digraphs. We give a spectral characterization of normal signed digraphs and use it to construct cospectral normal signed digraphs.

1. Introduction

A signed digraph is defined to be a pair $S=(D, \sigma)$, where $D=(V, \mathscr{A})$ is the underlying digraph and $\sigma: \mathscr{A} \rightarrow\{-1,1\}$ is the signing function. The sets of positive and negative arcs of S are respectively denoted by \mathscr{A}^{+} and \mathscr{A}^{-}. So the arc set of S is $\mathscr{A}=\mathscr{A}^{+} \cup \mathscr{A}^{-}$. A signed digraph is said to be homogeneous if all of its arcs have either positive sign or negative sign and heterogeneous, otherwise. Throughout this paper, the bold arcs will denote positive arcs and the dotted arcs will denote negative arcs.

An arc from a vertex u to the vertex v is represented by (u, v). A path of length $n-1(n \geqslant 2)$, denoted by P_{n}, is a signed digraph on n vertices $v_{1}, v_{2}, \ldots, v_{n}$ with $n-1$ signed $\operatorname{arcs}\left(v_{i}, v_{i+1}\right), i=1,2, \ldots, n-1$. A cycle of length n is a signed digraph having vertices $v_{1}, v_{2}, \ldots, v_{n}$ and signed $\operatorname{arcs}\left(v_{i}, v_{i+1}\right), i=1,2, \ldots, n-1$ and $\left(v_{n}, v_{1}\right)$. A signed digraph S is said to be strongly connected if its underlying digraph S^{u} is strongly

[^0]connected. The sign of a signed digraph is defined as the product of signs of its arcs. A signed digraph is said to be positive (negative) if its sign is positive (negative), i.e., it contains an even (odd) number of negative arcs. A signed digraph is said to be all-positive (respectively, all-negative) if all of its arcs are positive (respectively negative). A signed digraph is said to be cycle-balanced if each of its cycles is positive and non-cyclebalanced, otherwise. We denote the positive and negative cycle of order n respectively by C_{n} and \mathbf{C}_{n}, where n is the number of vertices.

The adjacency matrix of a signed digraph S with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ is the $n \times n$ matrix $A(S)=\left(a_{i j}\right)$, where

$$
a_{i j}= \begin{cases}\sigma\left(v_{i}, v_{j}\right) & \text { if there is an arc from } v_{i} \text { to } v_{j} \\ 0 & \text { otherwise }\end{cases}
$$

The characteristic polynomial $|x I-A(S)|$ of the adjacency matrix $A(S)$ of a signed digraph S is called the characteristic polynomial of S and is denoted by $\phi_{S}(x)$. The eigenvalues of $A(S)$ are called the eigenvalues of S. As $A(S)$ is not necessarily real symmetric, so eigenvalues can be complex numbers. The set of distinct eigenvalues of S together with their respective multiplicities is called the spectrum of S. If S is a signed digraph of order n with distinct eigenvalues $z_{1}, z_{2}, \ldots, z_{k}$ and if their respective multiplicities are $m_{1}, m_{2}, \ldots, m_{k}$, we write the spectrum of S as $\operatorname{spec}(S)=\left\{z_{1}^{\left(m_{1}\right)}, z_{2}^{\left(m_{2}\right)}, \ldots, z_{k}^{\left(m_{k}\right)}\right\}$.

A linear signed subdigraph of a signed digraph S is a signed subdigraph with indegree and outdegree of each vertex equal to one, i.e., each component is a cycle.

The following theorem connects the coefficients of the characteristic polynomial of a signed digraph with its structure [1].

Theorem 1. If S is a signed digraph with characteristic polynomial

$$
\phi_{S}(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}
$$

then

$$
a_{j}=\sum_{L \in £_{j}}(-1)^{p(L)} \prod_{Z \in c(L)} s(Z)
$$

for all $j=1,2, \ldots, n$, where $£_{j}$ is the set of all linear signed subdigraphs L of S of order $j, p(L)$ denotes the number of components of $L, c(L)$ denotes the set of all cycles of L and $s(Z)$ denotes the sign of cycle Z.

The spectral criterion for cycle-balance of signed digraphs given by Acharya [1] is as follows.

Theorem 2. A signed digraph S is cycle-balanced if and only if it is cospectral with the underlying unsigned digraph.

Two signed digraphs of the same order are said to be cospectral (or isospectral) if they have the same spectrum and non-cospectral, otherwise. Esser and Harary [6] studied digraphs with integral, real and Gaussian spectra. A signed digraph is said to be normal if its adjacency matrix is normal. In this paper, we show the existence of signed digraphs with integral, real and Gaussian spectra. We give a spectral characterization of normal signed digraphs and as a consequence we construct cospectral normal signed digraphs.

2. Existence of cospectral signed digraphs

Let $S_{1}=\left(V_{1}, \mathscr{A}_{1}, \sigma_{1}\right)$ and $S_{2}=\left(V_{2}, \mathscr{A}_{2}, \sigma_{2}\right)$ be two signed digraphs, their Cartesian product (or sum) [9] denoted by $S_{1} \times S_{2}$ is the signed digraph $\left(V_{1} \times V_{2}, \mathscr{A}, \sigma\right)$, where the arc set \mathscr{A} is that of the Cartesian product of underlying unsigned digraphs and the sign function is defined by

$$
\sigma\left(\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right)\right)= \begin{cases}\sigma_{1}\left(u_{i}, u_{k}\right) & \text { if } j=l \\ \sigma_{2}\left(v_{j}, v_{l}\right) & \text { if } i=k\end{cases}
$$

Unlike Kronecker product [8], Cartesian product of two strongly connected signed digraphs is always strongly connected as can be seen in the following result.

Lemma 1. If S_{1} and S_{2} are two strongly connected signed digraphs, then $S_{1} \times S_{2}$ is strongly connected.

Proof. Let $\left(u_{i}, v_{j}\right),\left(u_{p}, v_{q}\right) \in V\left(S_{1} \times S_{2}\right)$, where we assume $p \leqslant q$ (case $p>q$ can be dealt similarly). Since S_{1} is strongly connected, there exists a directed path $\left(u_{i}, u_{i+1}\right)\left(u_{i+1}, u_{i+2}\right) \ldots\left(u_{p-1}, u_{p}\right)$. Also, strong connectedness of S_{2} implies the existence of a directed path

$$
\left(v_{j}, v_{j+1}\right)\left(v_{j+1}, v_{j+2}\right) \ldots\left(v_{q-1}, v_{q}\right)
$$

By definition of Cartesian product, Fig. 1 illustrates the existence of a directed path from $\left(u_{i}, v_{j}\right)$ to $\left(u_{p}, v_{q}\right)$. Signs do not play any role in connectedness, so we take all arcs in Fig. 1 to be positive. Similarly, one can prove the reverse part.

Figure 1. Strong connectedness of Cartesian product of signed digraphs.

Figure 2. A pair of integral cospectral signed digraphs.

Definition 1. A signed digraph S is said to integral, or real, or Gaussian according as the spectrum of S is integral, or real, or Gaussian respectively.

The following result shows the existence of non-cycle-balanced integral signed digraphs.

Theorem 3. For each positive integer $n \geqslant 4$, there exists a family of n integral cospectral, strongly connected, non-symmetric and non-cyclebalanced signed digraphs of order 4^{n}.

Proof. Consider the signed digraphs S_{1} and S_{2} shown in Fig. 2. Clearly S_{1} and S_{2} are non-cycle-balanced and strongly connected. By Theorem 1,

$$
\phi_{S_{1}}(x)=\phi_{S_{2}}(x)=x^{4}-3 x^{2}+2 x .
$$

Therefore, $\operatorname{spec}\left(S_{1}\right)=\operatorname{spec}\left(S_{2}\right)=\left\{-2,0,1^{(2)}\right\}$. That is, S_{1} and S_{2} are integral cospectral. Let

$$
S^{(k)}=S_{1} \times S_{1} \times \cdots \times S_{1} \times S_{2} \times S_{2} \times \cdots \times S_{2}
$$

where we take k copies of S_{1} and $n-k$ copies of S_{2}. Clearly, for each n, we have n cospectral signed digraphs $S^{(k)}, \quad k=1,2, \ldots, n$ of order 4^{n}. S_{1} and S_{2} are non-symmetric implies $S^{(k)}$ is non-symmetric. By repeated application of Lemma 1 and using the fact that the Cartesian product of signed digraphs is cycle-balanced if and only if the constituent signed digraphs are cycle-balanced [Theorem 4.8, [9]], the result follows.

Integral signed digraphs are obviously real. There exist non-integral real signed digraphs as can be see in the following result.

Theorem 4. For each positive integer $n \geqslant 4$, there exists a family of n real cospectral, strongly connected, non-symmetric and non-cycle-balanced signed digraphs of order 4^{n}.

Proof. Consider the signed digraphs S_{1}, S_{2} shown in Fig. 3. Clearly, both signed digraphs are non-cycle-balanced and strongly connected. By Theorem 1,

$$
\phi_{S_{1}}(x)=\phi_{S_{2}}(x)=x^{4}-3 x^{2}+2 .
$$

Therefore, $\operatorname{spec}\left(S_{1}\right)=\operatorname{spec}\left(S_{2}\right)=\{-\sqrt{2},-1,1, \sqrt{2}\}$. Proceed in a similar way as in Theorem 3, the result follows.

Figure 3. A pair of real cospectral signed digraphs.
Every integral signed digraph is obviously Gaussian. The next result shows that there exist non-integral Gaussian signed digraphs, i.e., signed digraphs with eigenvalues of the form $a+\iota b$, where a and b are integers with $b \neq 0$, for some b.

Theorem 5. For each positive integer $n \geqslant 4$, there exists a collection of n Gaussian cospectral, strongly connected, non-symmetric and non-cyclebalanced signed digraphs of order 4^{n}.

Proof. Consider the signed digraphs S_{1} and S_{2} as shown in Fig. 4. Clearly S_{1} is cycle-balanced whereas S_{2} is non-cycle-balanced. Moreover both signed digraphs are strongly connected. By Theorem 1, we have $\phi_{S_{1}}(x)=$ $\phi_{S_{2}}(x)=x^{4}-1$. Therefore, $\operatorname{spec}\left(S_{1}\right)=\operatorname{spec}\left(S_{2}\right)=\{-1,1,-\iota, \iota\}$. Hence S_{1} and S_{2} are Gaussian cospectral. Proceed in a similar way as in Theorem 3, the result follows.

S_{1}

S_{2}

Figure 4. A pair of Gaussian cospectral signed digraphs.

Two digraphs D_{1} and D_{2} are said to be quasi-cospectral if there exist cospectral signed digraphs S_{1} and S_{2} on them respectively. Two cospectral digraphs are quasi-cospectral by Theorem 2, as we can take any two cyclebalanced signed digraphs one on each digraph. Two digraphs are said to be strictly quasi-cospectral if they are quasi-cospectral but not cospectral. Two digraphs D_{1} and D_{2} are said to be strongly quasi-cospectral if both D_{1} and D_{2} are cospectral and there exist non-cycle-balanced cospectral signed digraphs S_{1} and S_{2} on them respectively. It is clear that if D_{1} and D_{2} are strongly quasi-cospectral digraphs, then both should have at least on cycle. For quasi-cospectral and strongly quasi-cospectral graphs and digraphs see $[2,3]$.

Definition 2. We say two digraphs D_{1} and D_{2} are integral, real and Gaussian strongly quasi-cospectral if both D_{1} and D_{2} are respectively integral, real and Gaussian cospectral and there exists non-cycle-balanced signed digraphs S_{1} and S_{2} on them which are respectively integral, real and Gaussian cospectral.

The following two result show the existence of an integral and real strongly quasi-cospectral digraphs.

Theorem 6. For each positive integer $n \geqslant 4$, there exists a family of n integral, strongly connected, non-symmetric and strongly quasi-cospectral digraphs of order 4^{n}.

Proof. Let D_{1} and D_{2} respectively be the underlying digraphs of integral signed digraphs S_{1} and S_{2} shown in Fig. 2. Then D_{1} and D_{2} are all-positive signed digraphs. By Theorem 1, we have

$$
\phi_{D_{1}}(x)=\phi_{D_{2}}(x)=x^{4}-3 x^{2}-2 x .
$$

Therefore, $\operatorname{spec}\left(D_{1}\right)=\operatorname{spec}\left(D_{2}\right)=\left\{-1^{(2)}, 0,2\right\}$.
Take $D^{(k)}=D_{1} \times D_{1} \times \cdots \times D_{1} \times D_{2} \times D_{2} \times \cdots \times D_{2}$, where we take k copies of D_{1} and $n-k$ copies of D_{2}. In this way, for each $n \geqslant 4$, we get n cospectral non-symmetric and strongly connected integral digraphs. Thus for any two of these integral cospectral digraphs $D^{\left(k_{1}\right)}$ and $D^{\left(k_{2}\right)}$ there exist corresponding non-cycle-balanced signed digraphs $S^{\left(k_{1}\right)}$ and $S^{\left(k_{2}\right)}$ on them which are integral cospectral.

The following result shows the existence of real strongly quasi cospectral digraphs.

Theorem 7. For each positive integer $n \geqslant 4$, there exists a collection of n real, strongly connected, non-symmetric and strongly quasi-cospectral digraphs of order 4^{n}.

Proof. Let D_{1} and D_{2} be the underlying digraphs of signed digraphs S_{1} and S_{2} as shown in Fig. 3. It is easy to see that $\phi_{D_{1}}(x)=\phi_{D_{2}}(x)=x^{4}-3 x^{2}-2 x$ and $\operatorname{spec}\left(D_{1}\right)=\operatorname{spec}\left(D_{2}\right)=\left\{-1^{(2)}, 0,2\right\}$. Also $\operatorname{spec}\left(S_{1}\right)=\operatorname{spec}\left(S_{2}\right)=$ $\{-\sqrt{2},-1,1, \sqrt{2}\}$. Thus D_{1} and D_{2} are real strongly quasi-cospectral. Applying the same technique as in Theorem 6, the result follows.

3. Normal signed digraphs

We start with the following definition.
Definition 3. A signed digraph S is said to normal if its adjacency matrix $A(S)$ is normal.

The following result can be seen in [9].
Lemma 2. Let S be a signed digraph having n vertices and a arcs and let $z_{1}, z_{2}, \ldots, z_{n}$ be its eigenvalues. Then
(i) $\sum_{j=1}^{n}\left(\Re z_{j}\right)^{2}-\sum_{j=1}^{n}\left(\Im z_{j}\right)^{2}=c_{2}^{+}-c_{2}^{-}$,
(ii) $\sum_{j=1}^{n}\left(\Re z_{j}\right)^{2}+\sum_{j=1}^{n}\left(\Im z_{j}\right)^{2} \leqslant a=a^{+}+a^{-}$, where c_{2}^{+}and c_{2}^{-}are the number of closed positive and negative walks of length 2 of the signed digraph S respectively.

The following result characterizes the normal signed digraphs in terms of the spectra.

Theorem 8. Let S be a signed digraph on n vertices, $a=a^{+}+a^{-}$arcs, c_{2}^{+}closed positive walks of length $2, c_{2}^{-}$closed negative walks of length 2 and let $z_{1}, z_{2}, \ldots, z_{n}$ be its eigenvalues. Then the following statements are equivalent.
(i) S is normal;
(ii) $\sum_{j=1}^{n}\left|z_{j}\right|^{2}=a$;
(iii) $\sum_{j=1}^{n}\left(\Re z_{j}\right)^{2}=\frac{1}{2}\left(a+\left(c_{2}^{+}-c_{2}^{-}\right)\right)$;
(iv) $\sum_{j=1}^{n}\left(\Im z_{j}\right)^{2}=\frac{1}{2}\left(a-\left(c_{2}^{+}-c_{2}^{-}\right)\right)$.

Proof. (i) \Longleftrightarrow (ii). From [7], we note that a matrix $A=\left(a_{i j}\right)$ is normal if and only if $\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}=\sum_{j=1}^{n}\left|\lambda_{j}\right|^{2}$, where λ_{j} are eigenvalues of A, $j=1,2, \ldots, n$.

For the adjacency matrix $A(S)$, we have

$$
\sum_{i, j=1}^{n}\left|a_{i j}\right|^{2}=\sum_{i, j=1}^{n}\left|\sigma\left(v_{i}, v_{j}\right)\right|^{2}=\sum_{i, j=1}^{n}\left|\sigma\left(v_{i}, v_{j}\right)\right|=a
$$

Therefore (i) \Longleftrightarrow (ii) follows.
(ii) \Longrightarrow (iii). Assume

$$
\sum_{j=1}^{n}\left|z_{j}\right|^{2}=\sum_{j=1}^{n}\left(\Re z_{j}\right)^{2}+\sum_{j=1}^{n}\left(\Im z_{j}\right)^{2}=a
$$

By (i) of Lemma 2, we have

$$
\sum_{j=1}^{n}\left(\Re z_{j}\right)^{2}-\sum_{j=1}^{n}\left(\Im z_{j}\right)^{2}=c_{2}^{+}-c_{2}^{-}
$$

and therefore $\sum_{j=1}^{n}\left(\Re z_{j}\right)^{2}=\frac{1}{2}\left(a+\left(c_{2}^{+}-c_{2}^{-}\right)\right)$.
(iii) \Longrightarrow (ii). Assume

$$
\sum_{j=1}^{n}\left(\Re z_{j}\right)^{2}=\frac{1}{2}\left(a+\left(c_{2}^{+}-c_{2}^{-}\right)\right)
$$

Then by (i) of Lemma $2 \sum_{j=1}^{n}\left(\Im z_{j}\right)^{2}=\frac{1}{2}\left(a-\left(c_{2}^{+}-c_{2}^{-}\right)\right)$. Therefore,

$$
\begin{aligned}
\sum_{j=1}^{n}\left|z_{j}\right|^{2} & =\sum_{j=1}^{n}\left(\Re z_{j}\right)^{2}+\sum_{j=1}^{n}\left(\Im z_{j}\right)^{2} \\
& =\frac{1}{2}\left(a+\left(c_{2}^{+}-c_{2}^{-}\right)\right)+\frac{1}{2}\left(a-\left(c_{2}^{+}-c_{2}^{-}\right)\right)=a .
\end{aligned}
$$

(iii) \Longleftrightarrow (iv) is clear from (i) of Lemma 2.

A signed digraph S of order n is said to be unicyclic if it has n arcs and a unique cycle of length $r \leqslant n$. An application of Theorem 8 is the following result which gives a structural characterization of unicyclic signed digraphs to be normal.

Corollary 1. Let S be a unicyclic signed digraph of order n. Then S is normal if and only if $S=C_{n}$ or $S=\mathbf{C}_{\mathbf{n}}$.

Proof. Let S be a unicyclic signed digraph of order and size n and with unique cycle of length $r \leqslant n$. The $\operatorname{spec}(S)=\left\{0^{n-r}, e^{\frac{2 \iota j \pi}{r}}\right\}$ or $\operatorname{spec}(S)=$ $\left\{0^{n-r}, e^{\frac{\iota(2 j+1) \pi}{r}}\right\}$ according as S is cycle-balanced or non-cycle-balanced, where $\iota=\sqrt{-1}$ and $j=0,1,2, \ldots, r-1$. The sum of the squares of absolute values of eigenvalues of S is r. By Theorem 8 , clearly S is normal if and only if $r=n$, i.e., if and only if $S=C_{n}$, or $S=\mathbf{C}_{\mathbf{n}}$.

The Kronecker product (strong product or conjunction) of two signed digraphs $S_{1}=\left(V_{1}, \mathscr{A}_{1}, \sigma_{1}\right)$ and $S_{2}=\left(V_{2}, \mathscr{A}_{2}, \sigma_{2}\right)$, denoted by $S_{1} \otimes S_{2}$, is the signed digraph $\left(V_{1} \times V_{2}, \mathscr{A}, \sigma\right)$, where arc set is the arc set of underlying unsigned digraphs and the sign function is defined by $\sigma\left(\left(u_{i}, v_{j}\right),\left(u_{k}, v_{l}\right)\right)=$ $\sigma_{1}\left(u_{i}, u_{k}\right) \sigma_{2}\left(v_{j}, v_{l}\right)$.

The following result connects the order and size of the Kronecker product of two signed digraphs in terms of those of constituent signed digraphs. The proof follows by definition.

Lemma 3. Let $S_{1}\left(V_{1}, \mathscr{A}_{1}\right)$ and $S_{2}\left(V_{2}, \mathscr{A}_{2}\right)$ be two signed digraphs with $\left|V_{i}\right|=n_{i}$ and $\left|\mathscr{A}_{i}\right|=a_{i}, i=1,2$. Then $\left|V\left(S_{1} \otimes S_{2}\right)\right|=n_{1} n_{2}$ and $\mid \mathscr{A}\left(S_{1} \otimes\right.$ $\left.S_{2}\right) \mid=a_{1} a_{2}$.

The next result shows that the Kronecker product of two normal signed digraphs is normal.

Theorem 9. If S_{1} and S_{2} are two normal signed digraphs, then $S_{1} \otimes S_{2}$ is normal.

Proof. Assume that $S_{1}\left(V_{1}, \mathscr{A}_{1}\right)$ and $S_{2}\left(V_{2}, \mathscr{A}_{2}\right)$ are two normal signed digraphs with $\left|V_{i}\right|=n_{i}$ and $|\mathscr{A}|=a_{i}, i=1,2$. Let $z_{1 i}$ and $z_{2 j}$, with $1 \leqslant i \leqslant n_{1}, 1 \leqslant j \leqslant n_{2}$ respectively be the eigenvalues of S_{1} and S_{2}. By [[9], Theorem 4.5], the eigenvalues of $S_{1} \otimes S_{2}$ are $z_{1 i} z_{2 j}$.

By Theorem 8, we have $\sum_{i=1}^{n_{1}}\left|z_{1 i}\right|^{2}=a_{1}$ and $\sum_{j=1}^{n_{2}}\left|z_{2 j}\right|^{2}=a_{2}$.
Therefore, $\sum_{i, j}\left|z_{1 i} z_{2 j}\right|^{2}=\sum_{i}\left|z_{1 i}\right|^{2} \sum_{j}\left|z_{2 j}\right|^{2}=a_{1} a_{2}$. By Theorem 8 and Lemma 3, the result follows.

Now we give the existence of cospectral normal signed digraphs.
Theorem 10. For each positive integer $n \geqslant 4$, there exists a collection of n non-symmetric, cospectral normal signed digraphs.

Proof. Consider the signed digraphs S_{1} and S_{2}, shown in Fig. 5. It is clear that S_{1} is non-cycle-balanced and S_{2} is cycle-balanced. By Theorem 1, $\phi_{S_{1}}(x)=\phi_{S_{2}}(x)=x^{4}-1$. Therefore, $\operatorname{spec}\left(S_{1}\right)=\operatorname{spec}\left(S_{2}\right)=\{-1,1,-\iota, \iota\}$. That is, S_{1} and S_{2} are cospectral. By Theorem 3.3, S_{1} and S_{2} are normal. Define $S^{[k]}=S_{1} \otimes S_{1} \otimes \cdots \otimes S_{1} \otimes S_{2} \otimes S_{2} \otimes \cdots \otimes S_{2}$, where we take k copies of S_{1} and $n-k$ copies of S_{2}. By Theorem 9 , for each n, we have n cospectral normal signed digraphs $S^{[k]}, k=1,2, \ldots, n$ of order $4^{n} . S_{1}$ and S_{2} are non-symmetric implies $S^{[k]}$ is non-symmetric.

Figure 5. A pair of cospectral normal signed digraphs.
Acknowledgements. This research is supported by the DST, New Delhi research project.

References

[1] B. D. Acharya, Spectral criterion for the cycle balance in networks, J. Graph Theory, 4, 1980, 1-11.
[2] B. D. Acharya, M. K. Gill and G. A. Patwardhan, Quasicospectral graphs and digraphs, National Symposium on Mathematical Modelling M. R. I. Allahabad: July 19-20, 1982.
[3] M. Acharya, Quasi-cospectrality of graphs and digraphs: A creative review, J. Comb. Inf. Syst. Sci. 37, 2012, 241-256.
[4] M. A. Bhat and S. Pirzada, On equienergetic signed graphs, Discrete Appl. Math. 189, 2015, 1-7.
[5] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Academic press, New York 1980.
[6] F. Esser and F. Harary, Digraphs with real and Gaussian spectra, Discrete Appl. Math. 2, 1980, 113-124.
[7] R. A. Horn and C. R. Johnson. Matrix analysis, Cambridge University Press, Cambridge second edition, 2013.
[8] M. H. McAndrew, On the product of directed graphs, Proc. Amer. Math. Soc., 14, 1963, 600-606.
[9] S. Pirzada and M. A. Bhat, Energy of signed digraphs, Discrete Appl. Math., 169, 2014, 195-205.
[10] J. Rada, Bounds for the energy of normal digraph, Linear Multilinear Algebra, 60, 2012, 323-332.

Contact information

M. A. Bhat, Department of Mathematics,
S. Pirzada University of Kashmir, India

E-Mail(s): mushtaqab1125@gmail.com, pirzadasd@kashmiruniversity.ac.in Web-page(s): http://maths.uok.edu.in

T. A. Naikoo Department of Mathematics, Islamia College for Science and Commerce, Srinagar, India E-Mail(s): tariqnaikoo@rediffmail.com

Received by the editors: 11.05.2016.

[^0]: 2010 MSC: 05C30, 05C50.
 Key words and phrases: spectrum of a signed digraph, cospectral signed digraphs, normal signed digraph.

