CI-property for the group $\left(\mathbb{Z}_{p}\right)^{2} \times \mathbb{Z}_{q} \times \mathbb{Z}_{r}$

Eskander Ali and Ahed Hassoon

Communicated by I. Ya. Subbotin

Abstract. In this paper we prove that the group $\left(\mathbb{Z}_{p}\right)^{2} \times$ $\mathbb{Z}_{q} \times \mathbb{Z}_{r}$ is CI-group, where p, q, r are primes such that q and r divide $p-1$, and r divides $q-1$.

1. Introduction

A Cayley graph over a finite group H defined by a connection set $S \subseteq H$ has H as a set of nodes and arc set $\operatorname{Cay}(H, S):=\left\{(x, y): y \cdot x^{-1} \in S\right\}$. Two Cayley graphs Cay (H, S) and Cay (K, T) are Cayley isomorphic if there exists a group isomorphism $f: H \rightarrow K$ which is a graph isomorphism too.

A subset $S \subseteq H$ is called a CI-subset if for each $T \subseteq H$, the graphs $\operatorname{Cay}(H, S), \operatorname{Cay}(H, T)$ are isomorphic if and only if the sets T and S are conjugate by an element of $\operatorname{Aut}(H)$. A group H is called a CI-group if each subset of H is a CI-subset.
L. Babai and P. Frankl began to investigate arbitrary CI-groups, see $[1,2]$. They found several necessary conditions for a group to be a CI-group and asked for a complete classification of CI-groups. During last few years this problem was intensively studied by L. Nowitz, C.H. Li, M. Conder, S. Praeger, M.Y. Xu, J.X. Meng and P.Palfy [4, 12]

In order to finish the classification of CI-groups one has to answer two basic questions: Which groups are CI-groups and when a coprime product of two CI-groups is a CI-group. The first question was answered affirmatively for many groups: $D_{2 p}$ (Babai, [2]), $E\left(\mathbb{Z}_{p}, 4\right)$ (Li-Palfy, [3]),

Key words and phrases: CI-groups, Schur ring, wreath product.
$\mathbb{Z}_{p}^{e}: e \leqslant 3$ (Dobson, [4]), \mathbb{Z}_{p}^{4} (Hirasaka-Muzychuk, [9]), $\mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}$ (I. Kovacs and M. Muzychuk, [11]), \mathbb{Z}_{p}^{5} (Yan Feng and I. Kovacs, [8]), \mathbb{Z}_{n} and $\mathbb{Z}_{2 n}$ and $\mathbb{Z}_{4 n}$ where n is square-free odd (Muzychuk, [14]). The proofs of CIproperty for the groups $H=\mathbb{Z}_{p}^{n}$ for $n \in\{4,5\}$ and $H=\mathbb{Z}_{p}^{2} \times \mathbb{Z}_{q}$ are based on the method of S-rings. In fact, in these proofs it was checked that every Schurian S-ring over H is a CI-S-ring. Due to the result of Hirasaka and Muzychuk, this is sufficient for the proof that H is a CI-group. In this paper we prove the following.

Theorem 1. The group $\left(\mathbb{Z}_{p}\right)^{2} \times \mathbb{Z}_{q} \times \mathbb{Z}_{r}$ is CI-group, where p, q, r are primes such that q and r divide $p-1$, and r divides $q-1$.

The text of the paper is organized in the following way. Section 2 contains a background of S-rings. In Section 3 we prove a necessary condition for an S-ring over an abelian group H such that Sylow subgroups of H are elementary abelian to be a CI-S-ring. In Section 4 we prove Theorem 1.

2. Preliminaries

Let X be a nonempty finite set, $\operatorname{Sym}(X)$ denote to the group of all permutations of X. And H is an arbitrary finite multiplicatively written group with identity 1 . If $S \subseteq H$ and $f \in \operatorname{Sym}(H)$, then

$$
\operatorname{Cay}(H, S)^{f}:=\left\{\left(x^{f}, y^{f}\right):(x, y) \in \operatorname{Cay}(H, S)\right\}
$$

The automorphism group $\operatorname{Aut}(\operatorname{Cay}(H, S))$ of a Cayley graph Cay (H, S) consists of all permutations $f \in \operatorname{Sym}(H)$ which satisfy $\operatorname{Cay}(H, S)^{f}=$ $\operatorname{Cay}(H, S)$. And this group always contains the regular group H_{R} which consists of the right shifts $h_{R}: h \in H$ the action of which on H is determined as follows: $x^{h_{R}}=x h: x \in H$.
2.1. S-rings. Let H be a finite group. We denote by $\mathbb{Z} H$ the group ring of H. For a subset $T \subseteq H$, let \underline{T} denote the group ring element $\sum_{x \in H} a_{x} \underline{x}$ with: $a_{x}=1$ if $x \in T$, and $a_{x}=0$ otherwise. Such elements called simple quantities. A subring \mathcal{A} of $\mathbb{Z} H$ is called a Schur ring (or S-ring) over H if the following axioms are satisfied:

1) There exists a basis of \mathcal{A} consisting of simple quantities $\underline{T_{0}}, \underline{T_{1}}, \ldots, \underline{T_{r}}$.
2) $T_{0}=\{1\}, H=\cup_{i=0}^{r} T_{i}$ and $T_{i} \cap T_{j}=\phi$ for $1 \leqslant i \neq j \leqslant r$.
3) For every $i \in\{1,2, \ldots, r\}$ there exists $j \in\{1,2, \ldots, r\}$ such that $\underline{T_{i}^{-1}}=\underline{T_{j}}$.

The basis $\underline{T_{0}}, \underline{T_{1}}, \ldots, \underline{T_{r}}$ are unique and are called the standard basis of \mathcal{A}. In this case, we adopt the notation $\mathcal{A}=\left\langle T_{0}, T_{1}, \ldots, T_{r}\right\rangle$ to convey two essential facts: \mathcal{A} is an S -ring and its standard basis are $\underline{T_{0}}, \underline{T_{1}}, \ldots, \underline{T_{r}}$. Then the sets $T_{i}, 0 \leqslant i \leqslant r$, are called the basic sets of \mathcal{A} and we indicate this by writing $\operatorname{Bsets}(\mathcal{A})=\left\{T_{0}, T_{1}, \ldots, T_{r}\right\}$.

An S-ring $\mathcal{A}^{\prime} \subseteq \mathbb{Z} H$ is called S-subring of \mathcal{A}, if every element $z \in \mathcal{A}^{\prime}$ is equal to sum of elements from \mathcal{A}.

Let $\mathcal{A}=\left\langle T_{0}, T_{1}, \ldots, T_{r}\right\rangle$ be an S-ring over a group H. Following O . Tamaschke [21], a subgroup $F \leqslant H$ for which $\underline{F} \in \mathcal{A}$ is called an \mathcal{A} subgroup. There are two trivial \mathcal{A}-subgroups: $\{1\}$ and H. If $\operatorname{Bsets}(\mathcal{A})$ $=\{\{1\}, H \backslash\{1\}\}$ then \mathcal{A} is trivial S-ring over H.

For F is an \mathcal{A}-subgroup, define $\mathcal{A}_{F}:=\mathcal{A} \cap \mathbf{Z} F$. It is easy to check that \mathcal{A}_{F} is an S-ring over the group F and that $\operatorname{Bsets}\left(\mathcal{A}_{F}\right)=\{T \in \operatorname{Bsets}(\mathcal{A})$: $T \subset F\}$. Such S-rings \mathcal{A}_{F} are called induced S-subrings of \mathcal{A}. If F is an $\mathcal{A}-$ subgroup which is normal in H then the natural homomorphism $\pi: H \rightarrow$ H / F can be canonically extended to a homomorphism $\mathbf{Z} H \rightarrow \mathbf{Z} H / F$ which we shall also denote by π. We introduce the following notation: $T / F:=\pi(T)=\{\pi(t): t \in T\}$ for $T \subset H, \mathcal{A} / F:=\pi(\mathcal{A})=\{\pi(x):$ $x \in \mathcal{A}\}$. We call \mathcal{A} / F a quotient S-ring (over the factor group H / F), and from $[21] \mathcal{A} / F$ is an S-ring over H / F with basic sets are given by: $\operatorname{Bsets}(\mathcal{A} / F)=\{T / F: t \in \operatorname{Bsets}(\mathcal{A})\}$.

The thin radical of an S-ring \mathcal{A} is defined by the set $O_{\theta}(\mathcal{A})=\{h \in$ $H:\{h\} \in \operatorname{Bsets}(\mathcal{A})\}$. It is easy to see that $O_{\theta}(\mathcal{A})$ is an \mathcal{A}-subgroup.

Now, let G be an arbitrary group such that $H_{R} \leqslant G \leqslant \operatorname{Sym}(H)$ and let $T_{0}=\{1\}, T_{1}, \ldots T_{d}$ be the set of all G_{1}-orbits, (where G_{1} is stabilizer of the element 1). The vector space spanned by $T_{0}=\{1\}, T_{1}, \ldots T_{d}$ is called the transitivity module of G and is denoted by $\mathcal{V}\left(H, G_{1}\right)$. By ([22]), the transitivity module $\mathcal{V}\left(H, G_{1}\right)$ is an S-ring over H. But the converse is not true, i.e., not every S-ring is the transitivity module of an appropriate group. An S-ring over H will be called Schurian if it is the transitivity module of some $G \leqslant \operatorname{Sym}(H)$ with $H_{R} \leqslant G$.

An S-ring \mathcal{A} over H is said to be cyclotomic if $\operatorname{Bsets}(\mathcal{A})=\operatorname{Orbit}(K, H)$ for $K \leqslant \operatorname{Aut}(H)$. In this case we write $\mathcal{A}=\operatorname{Cyc}(K, H)$ and it is eassy to see, $\mathcal{A}=\mathcal{V}\left(K \cdot H_{R}, H\right)$. So every cyclotomic S-ring is Schurian.

Definition 1. Let \mathcal{A} be an S-ring over a group H and N be an \mathcal{A}-subgroup such that $N \unlhd H$. Then \mathcal{A} is a wreath product, notation: $\mathcal{A}=\mathcal{A}_{N} \backslash \mathcal{A}_{H / N}$, if for every $T \in \operatorname{Bsets}(\mathcal{A})$ then $T \subset N$, or T is a union of N-cosets.

Definition 2. Let \mathcal{A} be an S-ring over a group H and E, F be \mathcal{A}-subgroups such that $H=E F$ and $E \cap F=\{e\}$. Then \mathcal{A} is a tensor product, notation:
$\mathcal{A}=\mathcal{A}_{E} \otimes \mathcal{A}_{F}$ if for every $T \in \operatorname{Bsets}(\mathcal{A})$, if $T \nsubseteq E \cup F$ then $T=R S$ where $R \in \operatorname{Bsets}(\mathcal{A}) \cap E$ and $S \in \operatorname{Bsets}(\mathcal{A}) \cap F$.

Consequently, if \mathcal{A} is an S-ring over the direct product $H=E \times F$ such that both E and F are \mathcal{A}-subgroups and $\mathcal{A}_{E}=\mathbb{Z} E$ or $\mathcal{A}_{F}=\mathbb{Z} F$, then $A=\mathcal{A}_{E} \otimes \mathcal{A}_{F}$.

We say that an S-ring \mathcal{A} over a group H is a p-S-ring if H is a p-group, and all basic sets $T \in B \operatorname{set}(\mathcal{A})$ have p-power size. Following [9], If \mathcal{A} be a p-S-ring over elementary abelian group \mathbb{Z}_{p}^{n} then we have: If $n=1$ then $\mathcal{A}=\mathbb{Z} H$; And if $n=2$ then $\mathcal{A}=\mathbb{Z} C_{p} \prec \mathbb{Z} C_{p}$ or $\mathcal{A}=\mathbb{Z} C_{p}^{2}$. And every p-S-ring over \mathbb{Z}_{p}^{n} where $n=1,2,3$ is cyclotomic.

Lemma 1. [11] Let H be an abelian group, $G \leqslant \operatorname{Sym}(H)$ such that $H_{R} \leqslant G$, And let $\mathcal{A}=\mathcal{V}\left(H, G_{1}\right)$. If $E \leqslant H$ is an \mathcal{A}-subgroup such that H / E is a p-subgroup, Then \mathcal{A} / E is a p-S-ring.
2.2. Isomorphisms of S-rings. Denote by $\operatorname{Iso}(\mathcal{A})$ the set of all isomorphisms from \mathcal{A} to S -rings over H, that is:

$$
\operatorname{Iso}(\mathcal{A})=\left\{\begin{array}{r}
f \in \operatorname{Sym}(H): f \text { is an isomorphism from } \mathcal{A} \\
\text { onto an S-ring over } H
\end{array}\right\}
$$

And let $\operatorname{Iso}_{1}(\mathcal{A})=\left\{f \in \operatorname{Iso}(\mathcal{A}): 1^{f}=1\right\}$. Note that, $\operatorname{Iso}(\mathcal{A}) \subseteq \operatorname{Sym}(H)$, but it is not necessarily a subgroup. It follows from the definition that for any $f \in \operatorname{Aut}(\mathcal{A})$ and $g \in \operatorname{Aut}(H)$, their product $f g$ is an isomorphism from \mathcal{A} to an S-ring over H. Therefore, $\operatorname{Aut}(\mathcal{A})$. $\operatorname{Aut}(H) \subseteq \operatorname{Iso}(\mathcal{A})$. Now, we say that \mathcal{A} is a CI-S-ring, if $\operatorname{Iso}(\mathcal{A})=\operatorname{Aut}(\mathcal{A}) \operatorname{Aut}(H)$. This definition was given by Hirasaka and Muzychuk in [9] where the following theorem is proved.

Theorem 2. Let H be an abellian group, then H is CI-group if and only if every Schurian S-rings over H is CI-S-ring.

Therefore, instead of Theorem 1, we prove the following theorem:
Theorem 3. Let $H=\left(\mathbb{Z}_{p}\right)^{2} \times \mathbb{Z}_{q} \times \mathbb{Z}_{r}$, where p, q, r are primes such that q and r divide $p-1$, and r divides $q-1$. Let $\mathcal{A}=\mathcal{V}\left(H, G_{1}\right)$ where $G \leqslant \operatorname{Sym}(H)$ and $H_{R} \leqslant G$ then \mathcal{A} is CI-S-ring.

Let $G, G^{\prime} \leqslant \operatorname{Sym}(H)$, then G and G^{\prime} are called 2-equivalent if $\operatorname{Orbit}(G, H \times H)=\operatorname{Orbit}\left(G^{\prime}, H \times H\right)$, and we write $G \underset{2}{\approx} G^{\prime}$ in this case. If $\mathcal{A}=\mathcal{V}\left(H, G_{1}\right)$ for some $G \leqslant \operatorname{Sym}(H)$ with $H_{R} \leqslant G$ then $\operatorname{Aut}(\mathcal{A})$ is the largest group which is 2 -equivalent to G. If \mathcal{A} is an S-ring over H then we
put $\operatorname{Aut}_{H}(\mathcal{A})=\operatorname{Aut}(\mathcal{A}) \cap \operatorname{Aut}(H)$. If $K_{1}, K_{2} \leqslant \operatorname{Aut}(H)$ then K_{1} and K_{2} are called Cayley equivalent if $\operatorname{Orbit}\left(K_{1}, H\right)=\operatorname{Orbit}\left(K_{2}, H\right)$, and then we write $K_{1} \underset{\text { Cay }}{\approx} K_{2}$. If $\mathcal{A}=\operatorname{Cyc}(K, H)$ for some $K \leqslant \operatorname{Aut}(H)$ with $H_{R} \leqslant K$, then $\operatorname{Aut}_{H}(\mathcal{A})$ is the largest group which is Cayley equivalent to K. So a cyclcotomic S-ring \mathcal{A} over H is called Cayley minimal if

$$
\left\{K \leqslant \operatorname{Aut}(H): K \underset{\text { Cay }}{\approx} \operatorname{Aut}_{H}(\mathcal{A})\right\}=\left\{\operatorname{Aut}_{H}(\mathcal{A})\right\}
$$

It easy to see that the trivial S-ring $\mathbb{Z} H$ is Cayley minimal, and every cyclotomic S-ring over \mathbb{Z}_{n} is Cayley minimal. If $q \mid p-1$ then the group $\operatorname{Aut}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{q}\right)$ can be embedded into $\operatorname{Aut}\left(\mathbb{Z}_{p}\right)$. Therefore, if $q \mid p-1$ then every S-ring over $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$ is cyclotomic and Cayley minimal.

3. Generalized wreath product

Let \mathcal{A} be an S-ring over a group H and E, F be \mathcal{A}-subgroups such that $E \leqslant F$ and E is normal in H. Then \mathcal{A} is a generalized wreath product (or wedge product), $\mathcal{A}=\mathcal{A}_{F}{ }^{2}{ }_{F / E} \mathcal{A}_{H / E}$ if for every $T \in \operatorname{Bsets}(\mathcal{A})$ such that $T \nsubseteq F, T$ is a union of E-cosets. And \mathcal{A} is non-trivial generalized wreath product if $E \neq 1$ and $F \neq H$, in this case, $S=F / E$ is called \mathcal{A}-section.

Let H and H^{\prime} be finite groups. For a bijection $f: H \rightarrow H^{\prime}$ and a set $X \subseteq H$, the induced bijection from X onto X^{f} is denoted by f^{X}. For a set $\triangle \subseteq \operatorname{Sym}(H)$ and a section S of H we set $\triangle^{S}=\left\{f^{S}: f \in \triangle, S^{f}=S\right\}$. If S is an \mathcal{A}-section then, $\operatorname{Aut}_{H}(\mathcal{A})^{S} \leqslant \operatorname{Aut}_{S}\left(\mathcal{A}_{S}\right)$. In 2013 Evdokimov and Ponomarenko proved the following theorem [15].
Theorem 4. Let \mathcal{A} be an S-ring over an Abelian group H. Suppose $\mathcal{A}=$ $\mathcal{A}_{F}{ }^{2} / E \mathcal{A}_{H / E}$ for \mathcal{A} subgroups E, F of H. Then \mathcal{A} is Schurian if and only if so are the S-rings $\mathcal{A}_{H / F}$ and \mathcal{A}_{F} and there exist \triangle_{F} and $\triangle_{H / E}$ satisfying $F_{R} \leqslant \triangle_{F} \leqslant \operatorname{Aut}\left(\mathcal{A}_{F}\right)$ and $(H / E)_{R} \leqslant \triangle_{H / E} \leqslant \operatorname{Aut}\left(\mathcal{A}_{H / E}\right),\left(\triangle_{F}\right)^{F / E}=$ $\left(\triangle_{H / E}\right)^{F / E}$ such that $\triangle_{F} \underset{2}{\approx} \operatorname{Aut}\left(\mathcal{A}_{F}\right)$ and $\triangle_{H / E} \underset{2}{\approx} \operatorname{Aut}\left(\mathcal{A}_{H / E}\right)$. In this case $\operatorname{Aut}(\mathcal{A}) \underset{2}{\approx} \operatorname{Aut}\left(\mathcal{A}_{F}\right) \imath_{F / E} \operatorname{Aut}\left(\mathcal{A}_{H / E}\right)$.

Therefore, we conclude the following.
Theorem 5. Let H be an abelian group such that Sylow subgroups of H are elementary abelian, and let \mathcal{A} be an S-ring over H, such that $\mathcal{A}=$ $\mathcal{A}_{F}{ }^{2}{ }_{F / E} \mathcal{A}_{H / E}$ for \mathcal{A} subgroups E, F of H. Suppose \mathcal{A}_{F} and $\mathcal{A}_{H / E}$ are CI-S-rings and

$$
\operatorname{Aut}_{F}\left(\left(A_{F}\right)^{F / E}\right)=\operatorname{Aut}_{F / E}\left(\left(A_{F / E}\right)\right)=\operatorname{Aut}_{H / E}\left(\left(A_{H / E}\right)^{F / E}\right)
$$

then \mathcal{A} is CI-S-ring.

Proof. Let \mathcal{A}^{\prime} be an S -ring over H, and $f \in \operatorname{Iso}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$. By lemma (5.5) of [18], \mathcal{A}^{\prime} is F^{\prime} / E^{\prime}-wreath product, where $E^{\prime}=E^{f}$ and $F^{\prime}=F^{f}$. But H is abelian group, so we can found an $\tau \in \operatorname{Aut}(H): E^{f}=E^{\tau}, F^{f}=F^{\tau}$. Therefore, we can take $f . \tau^{-1}$ without f. So \mathcal{A}^{\prime} is F / E-wreath product. And $f^{F} \in \operatorname{Iso}\left(\mathcal{A}_{F}, \mathcal{A}_{F}^{\prime}\right), f^{H / E} \in \operatorname{Iso}\left(\mathcal{A}_{H / E}, \mathcal{A}_{H / E}^{\prime}\right)$. But \mathcal{A}_{F} and $\mathcal{A}_{H / E}$ are CI-S-rings. So $f^{F}=\varphi \sigma_{1}: \varphi \in \operatorname{Aut}\left(\mathcal{A}_{F}\right), \sigma_{1} \in \operatorname{Aut}(F)$, and $f^{H / E}=$ $\psi \sigma_{0}: \psi \in \operatorname{Aut}\left(\mathcal{A}_{H / E}\right), \sigma_{0} \in \operatorname{Aut}(H / E)$. By the condition of the theorem we have $f^{F / E}=\sigma_{1}^{F / E}=\sigma_{0}^{F / E}$, and so $\varphi^{F / E}=\psi^{F / E}$.

Because H is abelian group such that sylow subgroups of H are elementary abelian, we can write $H=D \times F$ and $F=V \times E$.

Now, let $D=\left\langle x_{1}\right\rangle \times \cdots \times\left\langle x_{t}\right\rangle$ and $\left(x_{i} E\right)^{\psi}=d_{i} v_{i} E$, where $d_{i} \in D$ and $v_{i} \in V, i \in\{1,2, . ., t\}$. We note that the elements $d_{i} . v_{i}: i=0,1,2, \ldots, t$ generate the group D^{\prime}, where $D^{\prime} \cap F=\{e\}$. We can found $\alpha \in \operatorname{Aut}(H)$ such that $\alpha^{F}=\varphi,\left(x_{i}\right)^{\alpha}=d_{i} \cdot v_{i}: i=1,2, \ldots, t$. Therefore we have $E^{\alpha}=E, F^{\alpha}=F$ and $(d L)^{\psi}=d^{\alpha} L$.

Now, let $T \in \operatorname{Bsets}(\mathcal{A})$. If $T \subseteq F$ then $T^{f}=T^{\alpha}$ by the definition of α. If $T \nsubseteq F$ then $T=d_{1} v_{1} E \cup d_{2} v_{2} E \cdots \cup d_{t} v_{t} E$. So,

$$
\begin{aligned}
T^{\alpha} & =\left(d_{1}\right)^{\alpha}\left(v_{1}\right)^{\alpha} E \cup\left(d_{2}\right)^{\alpha}\left(v_{2}\right)^{\alpha} E \cup \cdots \cup\left(d_{t}\right)^{\alpha}\left(v_{t}\right)^{\alpha} E \\
& =\left(d_{1}\right)^{\alpha}\left(v_{1}\right)^{\varphi} E \cup\left(d_{2}\right)^{\alpha}\left(v_{2}\right)^{\varphi} E \cup \cdots \cup\left(d_{t}\right)^{\alpha}\left(v_{t}\right)^{\varphi} E \\
& =\left(d_{1}\right)^{\alpha}\left(v_{1} E\right)^{\varphi} \cup\left(d_{2}\right)^{\alpha}\left(v_{2} E\right)^{\varphi} \cup \cdots \cup\left(d_{t}\right)^{\alpha}\left(v_{t} E\right)^{\varphi} .
\end{aligned}
$$

$\operatorname{But} \varphi^{F / E}=\psi^{F / E}$. So

$$
\begin{aligned}
T^{\alpha} & =\left(d_{1}\right)^{\alpha}\left(v_{1} E\right)^{\psi} \cup\left(d_{2}\right)^{\alpha}\left(v_{2} E\right)^{\psi} \cup \cdots \cup\left(d_{t}\right)^{\alpha}\left(v_{t} E\right)^{\psi} \\
& =\left(d_{1} E\right)^{\alpha}\left(v_{1} E\right)^{\psi} \cup\left(d_{2} E\right)^{\alpha}\left(v_{2} E\right)^{\psi} \cup \cdots \cup\left(d_{t} E\right)^{\alpha}\left(v_{t} E\right)^{\psi} \\
& =\left(d_{1} E\right)^{\psi}\left(v_{1} E\right)^{\psi} \cup\left(d_{2} E\right)^{\psi}\left(v_{2} E\right)^{\psi} \cup \cdots \cup\left(d_{t} E\right)^{\psi}\left(v_{t} E\right)^{\psi} \\
& =\left(d_{1} v_{1} E \cup d_{2} v_{2} E \cup \cdots \cup d_{t} v_{t} E\right)^{\psi}=T^{\psi} .
\end{aligned}
$$

Consequently, $T^{\alpha} / E=T^{\psi} / E=(T / E)^{\psi}=(T / E)^{f^{H / E}}=(T / E)^{f}$. Since T is a union of E-cosets, then T is a union of E^{α}-cosets, and $E^{\alpha}=E$, we found that $T^{\alpha}=T^{f}$. Consequently, $T^{f \alpha^{-1}}=T$, so $f \alpha^{-1} \in \operatorname{Aut}(\mathcal{A})$, and $f \in \operatorname{Aut}(\mathcal{A}) \alpha \subseteq \operatorname{Aut}(\mathcal{A})$. $\operatorname{Aut}(H)$. And, So \mathcal{A} is $C I$-S-ring.

Now, let H be an abelian group such that Sylow subgroups of H are elementary abelian, and suppose \mathcal{A} be an S-ring over H, such that $\mathcal{A}=\mathcal{A}_{F} \imath_{F / E} \mathcal{A}_{H / E}$, and $\mathcal{A}_{F}, \mathcal{A}_{H / E}$ are CI-S-ring. Then we have

Lemma 2. If $\mathcal{A}_{F / E}=\mathbb{Z}(F / E)$ then \mathcal{A} is CI-S ring.

Proof. If $\mathcal{A}_{F / E}=\mathbb{Z}(F / E)$ then $\operatorname{Aut}\left(\mathcal{A}_{F / E}\right)$ is trivial. But we have $\operatorname{Aut}_{F}\left(\left(\mathcal{A}_{F}\right)^{F / E}\right) \leqslant \operatorname{Aut}_{F / E}\left(\mathcal{A}_{F / E}\right)$. So $\operatorname{Aut}_{F}\left(\left(A_{F}\right)^{F / E}\right)=\operatorname{Aut}_{F / E}\left(\mathcal{A}_{F / E}\right)$. By theorem 5, \mathcal{A} is CI-S-ring.

Lemma 3. If $\mathcal{A}_{F / E}$ is Cayley minimal then \mathcal{A} is $C I-S$ ring.
Proof. We have $\operatorname{Aut}_{F}\left(\mathcal{A}_{F}\right)^{F / E} \leqslant \operatorname{Aut}_{F / E}\left(\mathcal{A}_{F / E}\right)$. So, if $\mathcal{A}_{F / E}$ is Cayley minimal, then $\operatorname{Aut}_{F}\left(\mathcal{A}_{F}\right)^{F / E}=\operatorname{Aut}_{F / E}\left(\mathcal{A}_{F / E}\right)$. Therefore, by theorem 5, \mathcal{A} is CI-S-ring.

Lemma 4. If $\mathcal{A}_{F / E}=\mathbf{Z} C_{p} \backslash \mathbf{Z} C_{p}$ then \mathcal{A} is CI-S ring.
Proof. If $\mathcal{A}_{F / E}=\mathbf{Z} C_{p} \backslash \mathbf{Z} C_{p}$, then $\mathcal{A}_{F / E}$ is cyclotomic, and $\left|O_{\theta}\left(\mathcal{A}_{F / E}\right)\right|=p$. By proposition(4.3) of [6], we have $\mathcal{A}_{F / E}$ is Cayley minimal and by lemma 3, \mathcal{A} is CI-S ring.

4. S-rings over $\left(C_{p}\right)^{2} \times C_{q} \times C_{r}$

Let $H=M \times P$ where M is an abelian group and $P=C_{p}$ with prime p coprime to the order of M. And let \mathcal{A} be an S-ring over H, then we have the next lemma:

Lemma 5. [16] If there exist a maximal \mathcal{A}-subgroup N contained in M such that $N \neq M$, then one of the following statements holds:

1) $\mathcal{A}=\mathcal{A}_{N} \backslash \mathcal{A}_{H / N}$ where $\operatorname{rank}\left(\mathcal{A}_{H / N}\right)=2$.
2) \mathcal{A} is a F / E-wreath product for \mathcal{A}-subgroups $F, E \leqslant H$ such that $P \leqslant E<H$ and $F=P N$.

Therefore, If M is not \mathcal{A}-subgroup then the Hypothese of Lemma 5 is satisfied. So one of two statements of that lemma holds. If M is an \mathcal{A}-subgroup while P is not, then by lemma $1, \mathcal{A} / M=\mathbb{Z} C_{p}$. But the prime p coprime to the order of M. So every $T \in B \operatorname{sets}(\mathcal{A})$ with $T \cap M=\phi$ is equal to M-coset. This gives us that $\mathcal{A}=\mathcal{A}_{M}$ 亿 \mathcal{A} / M.

If M and P are \mathcal{A}-subgroups, then by lemma $1, \mathcal{A} / M=\mathbb{Z} C_{p}$. But $\mathcal{A}_{P}=\mathbb{Z} C_{p}$. So in this case $\mathcal{A}=\mathcal{A}_{M} \otimes \mathbb{Z} C_{p}$. Consequently, we have the next lemma:

Lemma 6. Let $H=\left(C_{p}\right)^{2} \times C_{q} \times C_{r}$ and \mathcal{A} is an S-ring over H. Then one of the following statements holds:

1) \mathcal{A} is F / E-wreath product for \mathcal{A}-subgroups $F, E \leqslant H$.
2) There exist \mathcal{A}-subgroups $H_{1}, H_{2} \leqslant H$ such that $\mathcal{A}=\mathcal{A}_{H_{1}} \otimes \mathcal{A}_{H_{2}}$.

5. Proof of theorem 3

Now let $H=\left(C_{p}\right)^{2} \times C_{q} \times C_{r}$ and $G \leqslant \operatorname{Sym}(H)$ such that $H_{R} \leqslant G$. Suppose $\mathcal{A}=\mathcal{V}\left(H, G_{1}\right)$. Then we have:

Lemma 7. \mathcal{A} is CI-S-ring.
Proof. By lemma 6, suppose at first \mathcal{A} is E / F-wreath product for \mathcal{A} subgroups F, E of H. Then $|E / F|=1, p, q, r$ or p^{2} or $p q, p r, q r$. If $\mathcal{A}_{F / E}$ is p-S-ring then we have:

Case (1): $|E / F|=p, q, r$. So $\mathcal{A}_{F / E}=\mathbb{Z}(F / E)$. By lemma 2, \mathcal{A} is CI-S-ring.

Case (2): $|E / F|=p^{2}$. Then either $\mathcal{A}_{F / E}=\mathbb{Z} C_{p}^{2}$ and by lemma $2, \mathcal{A}$ is CI-S-ring, or $\mathcal{A}_{F / E}=\mathbb{Z} C_{p} \backslash \mathbb{Z} C_{p}$, so $\mathcal{A}_{F / E}$ is Cayley minimal and by lemma $3, \mathcal{A}$ is CI-S-ring. If $\mathcal{A}_{F / E}$ is not p-S-ring then $\mathcal{A}_{F / E}$ is an S-ring over group of order p, q, r or p^{2} or $p q, p r, q r$. By our conditions on the numbers $p, q, r, \mathcal{A}_{F / E}$ is cyclotomic and so $\mathcal{A}_{F / E}$ is Cayley minimal. By lemma $3, \mathcal{A}$ is CI-S-ring.

If $|F / E|=1$, then \mathcal{A} is a wreath product of two proper S-rings over subgroups of H, but from [11] and [14] we can see that every proper subgroup of H is CI-group, thus by theorm 2, every schurian S-ring over a proper subgroup of H is a CI-S-ring, and \mathcal{A} is CI-S-ring. now suppose \mathcal{A} is not E / F-wreath product. If \mathcal{A} is a direct product $\mathcal{A}=\mathcal{A}_{1} \times \mathcal{A}_{2}$, where $\mathcal{A}_{1}, \mathcal{A}_{2}$ are S-rings over subgroups of H, then \mathcal{A}_{1} and \mathcal{A}_{2} are CI-S-rings by theorm 2 , and then \mathcal{A} is CI-S-ring.

By lemma 7 we complete the proof of theorem 3.

References

[1] Babai. L, Frankl. P, Isomorphisms of Cayley graphs I, Colloq. Math. Soc. J. Bolyai', Combinatorics Keszthely, 1976, pp. 35-52.
[2] Babai. L, Frankl. P, Isomorphisms of Cayley graphs. II, Acta Mathematica Hungarica (34:1-2), 1979, pp. 177-183.
[3] Babai. L, Isomorphism problem for a class of point-symmetric structures, Acta Mathematica Hungarica (29:3-4), 1977, pp. 329-336.
[4] Dobson. E, Isomorphism problem for Cayley graphs of \mathbb{Z}_{p}^{3}, Discrete Mathematics (147:1-3), 1995, pp. 87-94.
[5] Bailey. RA, Cameron, Peter. J, Crested products of association schemes. Journal of the London Mathematical Society-Cambridge University Press, v.72, n 1,2005, pp. 1-24
[6] Kovács. I; Grigory. R, CI-property for decomposable Schur rings over an elementary abelian group, arXiv preprint arXiv:1802.04571, 2018.
[7] Klin. M; Poschel. R,The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings. Algebraic methods in graph theory, vols. I, II (Szeged 1978)
[8] Feng.Q; Kovács. I, Elementary abelian groups of rank 5 are DCI-groups, arXiv preprint arXiv: 1705.02929, 2017.
[9] Hirasaka. M; Muzychuk. M, An elementary abelian group of rank 4 is a CI-group, Journal of Combinatorial Theory, Series A (94:2), 2001, pp. 339-362.
[10] Kim. K, On p-Schur rings over abelian groups of order p^{3}, Communications in Algebra (42:10), 2014, pp. 4456-4463.
[11] Kovács. I; Muzychuk. M, The Group $\left(\mathbb{Z}_{p}\right)^{2} \times \mathbb{Z}_{q}$ is a CI-Group, Communications in Algebra (37:10), 2009, pp. 3500-3515.
[12] Li C. H, On isomorphisms of finite Cayley graphs - a survey, Discrete Mathematics (256:1-2), 2002, pp. 301-334.
[13] Muzychuk. M, An elementary abelian group of large rank is not a CI-group, Discrete Mathematics (264:1-3), 2003, pp. 167-185.
[14] Muzychuk. M, Adam's Conjecture is True in the Square-Free Case, Journal of Combinatorial Theory, Series A 72, 1995, pp. 118-134.
[15] Evdokimov. S., Ponomarenko. I., Schurity of s-rings over a cyclic group and generalized wreath product of permutation groups. St. Petersburg Mathematical Journal, Vol. 24,3,2013,pp.431-460.
[16] Evdokimov. S; Kovács. I, Ponomarenko.I, On schurity of finite abelian groups. Communications in Algebra, Vol. 44-1, 2016, pp.101-117.
[17] Evdokimov. S; Kovács. I, Ponomarenko.I, Characterization of cyclic Schur groups. St. Petersburg Mathematical Journal, Vol. 25,5, 2014, pp.755-773.
[18] Evdokimov. S; Ponomarenko. I, Characterization of cyclotomic schemes and normal Schur rings over a cyclic group, Algebra and Analysis, 14(2002), 2, pp. 11-55
[19] Spiga. P, Wang. Q, An answer to Hirasaka and Muzychuk: Every p-Schur ring over C_{p}^{3} is Schurian, Discrete Mathematics (308:9), 2008, pp. 1760-1763.
[20] Grigory. R, On Schur p-Groups of odd order, Journal of Algebra and Its Applications. Vol. 16, No. 2, 2017, pp. 1750045-1750074.
[21] Tamaschke. O, a Generalization of Second Isomorphism Theorem in Group Theory, Atti Della Accademia Nazionale Dei Lincei Rendiconti-classe Di Scienze Fisichematematiche, Naturali (45:3-4), 1968.
[22] Wielandt.H, Finite Permutation Groups, Academic Press, Berlin, 1964.
[23] M. Klin, C. Pech, S. Reichard, COCO2P - a GAP package, 0.14, 07.02.2015, http://www.math.tu-dresden.de/pech/COCO2P.

CONTACT INFORMATION

E. Ali, A. Hassoon Department of Mathematics, Tishreen
University, Latakia, Syria
E-Mail(s): Pr.Eskander.Ali@gmail.com, Ahed100@gmail.com

Received by the editors: 20.06.2018
and in final form 20.07.2019.

