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Abstract. In this paper, exact sequences of graphs are

defined and investigated. Considering some functors on the category

of graphs, we study some conditions to determine exactness of

functors.

Introduction

In [6], we have introduced the torsion-unitary Cayley graph of modules
and study the exact sequence of Cayley graphs. In this paper, we define
an exact sequence of graphs in the category of graphs. Inspired by some
homological algebra, we introduce some homological graph theory.

The null graph is the unique graph having no vertices and the com-
plete graph on n vertices is denoted by Kn. In particular, let K0 and K

◦
1

be the null graph and the singleton graph with a loop, respectively. In
section 1, considering the quasi− kernel and unfaithful sets of graph
homomorphisms, we introduce an exact sequence of graphs and graph

homomorphisms in the form K0 → Γ1
ϕ
−→ Γ2

ψ
−→ Γ3 → K

◦
1. In order to

extend these notions to more general cases, we introduce two other exact
sequences as the first and the second kind which the first kind exact
sequences could be used in the category of sets. We state a version of the
Short Five Lemma in the category of graphs (see Theorem 2). Moreover,
by studying special diagrams of graphs and homomorphisms regarding
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short exact sequences, we determine properties of Γ2 in view of Γ1 and Γ3

(see Theorem 3 and 4).
In section 2, using the notions of Cartesian product, direct product

and map graph, we consider some induced functors and some conditions
to determine exactness of them.

Throughout the paper, all graphs are undirected and do not have
multiple edges, but may have loops, also they may be infinite. Let Γ
be a graph with the vertex set V (Γ) and edge set E(Γ). Two (induced)
subgraphs Γ1 and Γ2 of Γ are said to be disjoint if Γ1 and Γ2 have no
common vertices and no vertex of Γ1 is adjacent (in Γ) to any vertex of
Γ2. Let [x, x′] ∈ E(Γ), then x and x′ are adjacent, denoted by x ∼ x′, also
if they are not adjacent, denoted by x ≁ x′.

Let Γ and Υ be graphs. A function φ : V (Γ) → V (Υ) is a homomor-
phism from Γ to Υ if it preserves edges, that is, if for any edge [x, x′] of
Γ, [φ(x), φ(x′)] is an edge of Υ. A homomorphism φ : Γ → Υ is called
faithful if φ(Γ) is an induced subgraph of Υ. A homomorphism will be
called strong whenever [x, x′] ∈ E(Γ) if and only if [φ(x), φ(x′)] ∈ E(Υ).
A surjective homomorphism (on vertices) is often called an epimorphism,
an injective one (on vertices) is called a monomorphism and a bijective
homomorphism is sometimes called a bimorphism. In other words, a ho-
momorphism φ : Γ → Υ is faithful when there is an edge between any two
pre-images φ−1(u) and φ−1(u′) such that [u, u′] is an edge of Υ. When
a faithful homomorphism φ is bijective, it is strong since each φ−1(u) is
a singleton, and so [φ−1(u), φ−1(u′)] is an edge in Γ if and only if [u, u′]
is an edge of Υ. Thus a faithful bimorphism is an isomorphism and in
this case we write Γ ∼= Υ. Note that unlike in group theory, the inverse of
a bimorphism of graph need not be a homomorphism. For example, any
bimorphism from the complement of Kn to Kn. For more information on
graph homomorphisms, we refer the reader to [2].

Let P = {V1, ..., Vk} be a partition of the vertex set of Γ into non-
empty classes. The quotient Γ/P of Γ by P is the graph whose vertices are
the sets V1, ..., Vk and whose edges are the pairs [Vi, Vj ] such that there are
ui ∈ Vi, uj ∈ Vj with [ui, uj ] ∈ E(Γ). The mapping πP : V (Γ) → V (Γ/P)
defined by πP(u) = Vi such that u ∈ Vi, is the natural map for P . Quotients
often provide a way of deriving the structure of an object from the structure
of a larger one. Observe that πP is a homomorphism and it is automatically
faithful. A graph Γ is called bipartite if its vertex set can be represented
as the union of two disjoint sets V1 and V2, such that every edge of Γ
connects a vertex of V1 to one of V2. In these circumstances, we call V1,
V2 a bipartition of V (Γ).
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The empty graph Γ is a graph with E(Γ) = ∅. The coproduct or sum
of two graphs Γ1 and Γ2, denoted Γ1+Γ2, is a disjoint union with the vertex
set V (Γ1) ∪ V (Γ2) and the edge set E(Γ1) ∪ E(Γ2). The inclusion maps
i1 : Γ1 →֒ Γ1 + Γ2 and i2 : Γ2 →֒ Γ1 + Γ2 are strong monomorphisms. Let
ϕ1 be a homomorphism from Γ1 to Γ and let ϕ2 be a homomorphism from
Γ2 to Γ, then the homomorphism ϕ1+ϕ2 : Γ1+Γ2 → Γ maps vertices of Γ1

by ϕ1 and vertices of Γ2 by ϕ2. On the other hand, every homomorphism
ϕ : Γ1 + Γ2 → Γ is a natural sum of homomorphisms ϕ1 = ϕ|Γ1

and

ϕ2 = ϕ|Γ2
. Also,

k∑

i=1
Γ is denoted by kΓ. If Γ1,Γ2, · · · ,Γk are graphs, then

their Cartesian product is the graph, denoted by Γ12Γ22 · · ·2Γk with
vertex set {(x1, x2, · · · , xk)|xi ∈ V (Γi)} which two vertices (x1, x2, · · · , xk)
and (x′1, x

′
2, · · · , x

′
k) are adjacent whenever [xi, x

′
i] ∈ E(Γi) for exactly one

index 1 6 i 6 k, and xj = x′j for each index j 6= i. The direct product
of Γ and Υ is a graph, denoted by Γ×Υ, with vertex set V (Γ)× V (Υ),
such that vertices (x, y) and (x′, y′) are adjacent precisely if [x, x′] ∈
E(Γ) and [y, y′] ∈ E(Υ). Other names for the direct product that have
appeared in the literature are tensor product, Kronecker product or
categorical product. We know that the Cartesian product and direct
product are commutative and associative up to isomorphism.

The map (exponential) graph ΓΥ has the set of functions from V (Υ) to
V (Γ) as its vertices; two such functions f and g are adjacent in ΓΥ if and
only if whenever u and y are adjacent in Υ, the vertices f(u) and g(y) are
adjacent in Γ. A vertex in ΓΥ has a loop if and only if the corresponding
function is a homomorphism. Suppose that ϕ is a homomorphism from
Γ1 to Γ2. If f is a function from V (Υ) to V (Γ1), then the composition
ϕf is a function from V (Υ) to V (Γ2). Hence ϕ determines a map from
the vertices of Γ1

Υ to Γ2
Υ which is denoted by ϕ̂. Also, if g is a function

from V (Γ2) to V (Υ), then the composition gϕ is a function from V (Γ1) to
V (Υ). Hence ϕ determines a map from the vertices of ΥΓ2 to ΥΓ1 which
is denoted by ϕ̌. For more information on the map graph and the other
graph constructions, we refer the reader to [1] and [3–5].

Two distinct elements x, y ∈ V (Γ) is denoted by x 6= y. Consider
a graph homomorphism φ : Γ → Υ. Let Γ′ and Υ′ be graphs where
V (Γ) = V (Γ′) and V (Υ) = V (Υ′). Our mean of φ′ : Γ′ → Υ′ is a graph
homomorphism such that φ(x) = φ′(x) for all x ∈ V (Γ) = V (Γ′). Let
A ⊆ V (Γ), then AΓ is a subgraph of Γ induced by V (Γ)\A and a subgraph
of Υ induced by V (Υ) \ Im(φ) is denoted by φΥ. Let Γ1 be a subgraph of
Γ, then φ|Γ1

will denote the restriction of φ to Γ1. The neighborhood of
A, denoted by N(A), is the set of all vertices outside of A adjacent to at
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least one member of A. Moreover, let Γ1 be a subgraph of Γ, then N(Γ1)
denotes the subgraph induced by N(V (Γ1)). The natural monomorphism
from Γ1 to Γ is denoted by j. If Γ1 is an induced subgraph, then j is an
inclusion map. In these circumstances, we denote j by i.

1. Exact sequences of graphs

In this section, we define an exact sequence of graphs and we obtain
some of its properties. Before the original definition, we need to define
some sets.

Definition 1. Let X and Y be a pair of sets and f : X → Y be a function.
Quasi-kernel of f , denoted by K(f), is defined as K(f) =

⋃
{f−1(y) |

|f−1(y)| > 2 for y ∈ Y }.

Definition 2. Let Γ be a graph, A ⊆ V (Γ) and let A = {A, {xλ1},
{xλ2}, · · · } as a partition of V (Γ) for all xλi ∈ V (Γ) \ A with λi ∈ Λ.
In the following manner the quotient Γ/A is a graph induced by A. We
contract A as a vertex of Γ/A with a loop. In particular, if φ : Γ → Υ
is a graph homomorphism, then the partition {Im(φ), {uλ1}, {uλ2}, · · · }
of Υ is denoted by Iφ for all uλi ∈ V (Υ) \ Im(φ) with λi ∈ Λ. This
partition induces a quotient graph Υ/Iφ. The induced vertex of Im(φ) in
the quotient is denoted by I◦φ.

Definition 3. Suppose that A ⊆ V (Γ) and the vertex induced by A as
a vertex of Γ/A is denoted by A◦. If A◦ is not isolated vertex of Γ/A,
then Γ|ΓA is defined to be the graph with vertex set V (Γ) and edge set
E(Γ) ∪ E(N) where N is a complete bipartite graph constructed with A
and N(A) as a bipartition. Otherwise, graph Γ|ΓA = Γ.

Remark 1. (a) Let Γ and Υ be a pair of graphs and let φ : Γ → Υ be a
graph homomorphism.

(i) The homomorphism φ is injective if and only if K(φ) = ∅. Anyway,
|K(φ)| 6= 1.

(ii) The restriction of φ to K(φ)Γ is a monomorphism and there is an
induced monomorphism φ̄ : Γ/Kφ → Υ/Iφ|K .

(b) Let A ⊆ V (Γ), then j : Γ → Γ|ΓA is a monomorphism where j is
the inclusion map from V (Γ) to V (Γ|ΓA). If the subgraph induced by A
is complete, then epimorphism π′A : Γ|ΓA → Γ/A is strong.

Definition 4. Let φ : Γ → Υ be a graph homomorphism. Unfaithful
set of φ, denoted by F (φ), is defined as F (φ) = {x ∈ V (Γ) | x ≁ x′, if
φ(x) ∼ φ(x′) for some x′ ∈ V (Γ)}.
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Definition 5. Let φ : Γ → Υ be a graph homomorphism. A full graph of
Γ induced by φ , denoted by Γ|Fφ , is defined to be the graph with vertex
set V (Γ) and x ∼ x′ in Γ|Fφ if and only if φ(x) ∼ φ(x′) in Υ.

Remark 2. Let φ : Γ → Υ be a graph homomorphism.
(a) The homomorphism φ is strong if and only if F (φ) = ∅. Moreover,

K(φ) ∪ F (φ) = ∅ if and only if φ is a strong monomorphism of graphs.
Moreover, if |K(φ) ∪ F (φ)| = 1, then φ is a monomorphism and there
is a unique vertex without loop in Γ which maps to a vertex with loop.
Hereinafter, the set K(φ) ∪ F (φ) is denoted by Q(φ).

(b) The restriction of φ to Q(φ)Γ is a strong monomorphism. In partic-
ular, if φ is an epimorphism, then Γ/Qφ

∼= Υ/Iφ|Q . Moreover, if x ≁ y in
Γ where x /∈ F (φ) and y ∈ F (φ), then φ(x) ≁ φ(y) (if φ(x) ∼ φ(y), then
x ∈ F (φ), a contradiction).

(c) According to Definitions 4 and 5, the definition of full graph
Γ|Fφ is equivalent to that x ∼ x′ in Γ|Fφ whenever φ(x) ∼ φ(x′) for
x, x′ ∈ F (φ). Therefore, φF : Γ|Fφ → Υ is a strong homomorphism
and Q(φF ) = K(φF ) = K(φ). Moreover, let j : Γ → Γ|Fφ , then j is a
monomorphism and Q(j) = F (j) = F (φ).

Now by the above preliminaries, we are ready to define the exact
sequence of graph.

Definition 6. Suppose that {Γi} is a family of graphs and {ϕi} is a
family of graph homomorphisms, where i ∈ Z. A sequence of graphs and
homomorphisms

· · · → Γi−1
ϕi−1

−−−→ Γi
ϕi
−→ Γi+1 → · · · , (1)

is called exact whenever | Im(ϕi−1)| = 1, then either Q(ϕi) = ∅ or
Im(ϕi−1) = Q(ϕi), otherwise Im(ϕi−1) = Q(ϕi) for all i ∈ Z. In par-
ticular, the short exact sequence of graphs is an exact sequence in the
form

K0 → Γ1
ϕ
−→ Γ2

ψ
−→ Γ3 → K

◦
1. (2)

where K0 and K
◦
1 denote the null graph and a graph which has one vertex

with loop, respectively.

Definition 7. The sequence (1) is called semi-exact if Q(ϕi) ⊆ Im(ϕi−1)
and it is called a complex if Im(ϕi−1) ⊆ Q(ϕi) for all i ∈ Z. Also, the
sequence (1) is called exact of the first kind whenever | Im(ϕi−1)| = 1,
then K(ϕi) = ∅ (i.e., ϕi is injective), otherwise Im(ϕi−1) = K(ϕi) and
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it is called exact of the second kind if Im(ϕi−1) = F (ϕi) for all i ∈ Z.
In particular, the short exact sequence of the second kind is an exact

sequence of the second kind in the form K0 → Γ1
ϕ
−→ Γ2

ψ
−→ Γ3, where ψ is

an epimorphism.

It is necessary to observe that the concept of exact sequence of the
first kind could be expressed in the category of sets which we overlook it.
Let X and Y be a pair of sets and let f : X → Y be a function. Suppose
that A ⊆ X, then according to Definition 2, we can define X/A, Y/If
and If .

Remark 3. (a) Let sequence (1) be exact. Suppose that Γi = K
◦
1; then

ϕi−1 is an epimorphism, but the converse is not true in general. Also,
consider the following exact sequence:

K0 → Γ1
ϕ
−→ Γ2

ψ
−→ Γ3

τ
−→ Γ4

where ψ is an epimorphism. Then it can be converted to a short exact
sequence by replacing {πP3

, K◦1} instead of {τ,Γ4} with the partition
P3 = {V (Γ3)}.

(b) In the short exact sequence (2), ϕ is a strong monomorphism
by Remark 2(a). Moreover, Γ2/Iϕ ∼= Γ3/Iψϕ by Remark 2(b). Also, if
K(ψ) = ∅, then Γ2|Fφ

∼= Γ3.

(c) Suppose that the sequence K0 → Γ
φ
−→ Υ → K

◦
1 is exact. It is easy

to see that φ is an isomorphism by parts (a) and (b).

(d) Let Γ1
ϕ1

−→ Γ2
ϕ2

−→ Γ3 and Γ3
ϕ3

−→ Γ4
ϕ4

−→ Γ5 be exact sequences of
graphs and homomorphisms. Obviously, the following statements hold:

(i) The sequence Γ1
ϕ1

−→ Γ2
ϕ3ϕ2

−−−→ Γ4 is exact, if ϕ3 is a strong monomor-
phism.

(ii) The sequence Γ2
ϕ3ϕ2

−−−→ Γ4
ϕ4

−→ Γ5 is exact, if ϕ2 is an epimorphism.

Example 1. (a) Consider the sequence K0 → 2K1
id
−→ 2K1

j
−→ K2 → K

◦
1,

then this sequence is exact of the second kind where id is an isomorphism
and j is a bimorphism. Moreover, it is exact too.

(b) Let G be a subgraph of Γ, then K0 → G
i
−֒→ Γ|G

π′
G

−→ Γ/G → K
◦
1 is a

short exact sequence. Also, the short sequence K0 → G
i
−֒→ Γ

πG
−→ Γ/G → K

◦
1

is exact of the first kind.

(c) Let φ : Γ → Υ be a graph homomorphism.
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(i) The sequences

K0 → Qφ
i
−֒→ Γ|Qφ

π′
Q

−−→ Γ/Qφ → K
◦
1,

K0 → Imφ
i
−֒→ Υ| Imφ

π′
I−→ Υ/Iφ → K

◦
1

are short exact and the sequences

K0 → Qφ
i
−֒→ Γ

φ
−→ Υ| Imφ

π′
I−→ Υ/Iφ → K

◦
1,

K0 → Kφ
i
−֒→ Γ|Fφ

φ′F−−→ Υ| Imφ

π′
I−→ Υ/Iφ → K

◦
1

are exact.
(ii) The sequences

K0 → Kφ
i
−֒→ Γ

πK−−→ Γ/Kφ → K
◦
1,

K0 → Imφ
i
−֒→ Υ

πI−→ Υ/Iφ → K
◦
1

are short exact of the first kind and the sentence K0 → Kφ
i
−֒→ Γ

φ
−→

Υ
πI−→ Υ/Iφ → K

◦
1 is exact of the first kind.

(iii) The sequence K0 → Fφ
i
−֒→ Γ

j
−→ Γ|Fφ is short exact of the second

kind. Also, F (φ) = Q(j) by Remark 2(c). Therefore, K0 → Fφ
i
−֒→

Γ
j
−→ Γ|Fφ → K

◦
1 is a short exact sequence.

(d) By considering the short exact sequence (2), the sequence

K0 → Γ1
ϕ
−→ Γ2| Imϕ

ψ′

−→ Γ3| Imψϕ → K
◦
1

is short exact.

Theorem 1. Let Γ1
ϕ1

−→ Γ2
ϕ2

−→ Γ3
ϕ3

−→ Γ4 be an exact sequence of graphs
and let Γ1 6= ∅. If |Q(ϕ3)| = 0 or 1, then ϕ1 is an epimorphism.

Proof. Suppose that |Q(ϕ3)| = 1, then | Im(ϕ2)| = 1. If |V (Γ2)| = 1, it
is clear that ϕ1 is an epimorphism since Γ1 6= ∅. Suppose not; V (Γ2) =
K(ϕ2) = Im(ϕ1) and so ϕ1 is an epimorphism. Let Q(ϕ3) = ∅; then
| Im(ϕ2)| = 0 or 1 by the Definition 6. Let | Im(ϕ2)| = 1; then ϕ1 is an
epimorphism, by the previous proof. If Im(ϕ2) = ∅, then Γ1 = Γ2 = K0

and so ϕ1 is an epimorphism.
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Definition 8. A homomorphism of short exact sequences (of the first
kind) is a triple η1, η2, η3 of graph homomorphisms such that the following
diagram with exact (of the first kind) rows commutes:

K0
// Γ1

ϕ
//

η1

��

Γ2
ψ

//

η2

��

Γ3
//

η3

��

K
◦
1

K0
// Γ′

1

ϕ′

// Γ′
2

ψ′

// Γ′
3

// K
◦
1

The homomorphism is an isomorphism of short exact sequences (of the
first kind) if η1, η2, η3 are all isomorphisms.

Example 2. Consider the short exact sequence (2). Then the following
diagram with exact rows commutes:

K0
// Imϕ

i
//

ϕ−1

��

Γ2| Imϕ

πIϕ
//

id

��

Γ2/Iϕ //

ψ̄

��

K
◦
1

K0
// Γ1

ϕ
// Γ2| Imϕ

ψ̄πIϕ
// Γ3/Iψϕ // K

◦
1

By Remark (3)(b), the induced homomorphism ψ̄ is an isomorphism.
Therefore, this is an isomorphism of short exact sequences.

Theorem 2. Let

Γ1
ϕ

//

η1

��

Γ2
ψ

//

η2

��

Γ3
//

η3

��

K
◦
1

K0
// Γ′

1

ϕ′

// Γ′
2

ψ′

// Γ′
3

be a commutative diagram of graphs with semi-exact rows.

(1) If η1 and η3 are monomorphism, then so is η2.
(2) If η1 and η3 are strong homomorphism, then so is η2.
(3) If η1 and η3 are epimorphism, then so is η2.
(4) If η1 and η3 are isomorphism, then so is η2.

Proof. (1) Let η2(x2) = η2(y2) where x2 6= y2 in Γ2. Then ψ′η2(x2) =
ψ′η2(y2) and so η3ψ(x2) = η3ψ(y2). Since η3 is monomorphism, ψ(x2) =
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ψ(y2). Hence, x2, y2 ∈ K(ψ) ⊆ Im(ϕ) since x2 6= y2 and the rows are semi-
exact. Then there are x1 6= y1 in Γ1 where ϕ(x1) = x2 and ϕ(y1) = y2.
Hence, ϕ′η1(x1) 6= ϕ′η1(y1) since η1 and ϕ′ are monomorphisms. It is
contradiction to η2ϕ(x1) = η2(x2) = η2(y2) = η2ϕ(y1). Therefore, η2 is a
monomorphism.

(2) Let η2(x2) ∼ η2(y2) where x2 ≁ y2 in Γ2. Then ψ′η2(x2) ∼ ψ′η2(y2)
and so η3ψ(x2) ∼ η3ψ(y2). Since η3 is a strong homomorphism, ψ(x2) ∼
ψ(y2). Hence, x2, y2 ∈ F (ψ) ⊆ Im(ϕ) since x2 ≁ y2 and the rows are semi-
exact. Then there are x1 ≁ y1 in Γ1, where ϕ(x1) = x2 and ϕ(y1) = y2.
Hence, ϕ′η1(x1) ≁ ϕ′η1(y1) since η1 and ϕ′ are strong homomorphisms.
It is contradiction to η2ϕ(x1) = η2(x2) ∼ η2(y2) = η2ϕ(y1). Therefore, η2
is a strong homomorphism.

(3) Let x′2 ∈ V (Γ′
2). Then there is x2 ∈ V (Γ2), where ψ′(x′2) = η3ψ(x2)

since η3 and ψ are epimorphisms. If x′2 = η2(x2), then x′2 ∈ Im(η2).
Suppose not; then x′2 ∈ K(ψ′) ⊆ Im(ϕ′) since ψ′(x′2) = ψ′η2(x2) and the
rows are semi-exact. Hence, there is x1 ∈ V (Γ1), where ϕ′η1(x1) = x′2
since η1 is an epimorphism. So η2ϕ(x1) = ϕ′η1(x1) = x′2 and x′2 ∈ Im(η2).
Therefore, η2 is an epimorphism.

(4) By parts (1), (2) and (3), If η1 and η3 are isomorphisms, then η2
is an isomorphism.

In the following theorem, part of the impact of side graphs on Γ2 is
expressed in the short exact sequence (2).

Theorem 3. Consider the short exact sequence (2). Suppose that Γ1 and

ψϕΓ3 are empty graphs. Then Γ2 is bipartite, where V (Γ1) and V (ψϕΓ3)
is as a bipartition of V (Γ2). If Γ1 and Γ3 are finite graphs, then so is Γ2,
where |V (Γ2)| = |V (Γ1)|+ |V (ψϕΓ3)|.

Proof. Suppose that Γ1 is an empty graph. Then Γ1
∼= Imϕ = Qψ is empty

graph since ϕ is a strong monomorphism. Also, the restriction ψ|ϕΓ2
is a

strong monomorphism. Hence, ϕΓ2
∼= ψ−1(ψϕΓ3), where ψ−1(ψϕΓ3) is an

empty graph. Therefore, Γ2 is bipartite where Γ1 and ψϕΓ3 is a bipartition
of V (Γ). Since the restriction ψ|ϕΓ2

is a monomorphism, one has V (Γ2) =
Im(ϕ) ∪ ψ−1(V (Γ3) \ Im(ψϕ)). Therefore, |V (Γ2)| = |V (Γ1)|+ |V (ψϕΓ3)|
since ψ is an epimorphism and Im(ϕ) ∩ ψ−1(V (Γ3) \ Im(ψϕ)) = ∅.

Lemma 1. Consider the short exact sequence (2). Then the following
sequence is short exact:

K0 → Γ1 +N(Imψϕ)
i
−֒→ Γ1 +ψϕ Γ3

ψϕ+i
−−−→ Γ3 → K

◦
1.
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Proof. It is clear that the inclusion map i is a strong monomorphism.
Since V (Γ3) = Im(ψϕ)∪V (ψϕΓ3), the homomorphism ψϕ+ i is surjective.
Since Im(ψϕ) ∩ V (ψϕΓ3) = ∅, one has K(ψϕ+ i) = K(ψϕ). Also, since
Γ1 and ψϕΓ3 are disjoint and every vertex of Imψϕ is adjacent to some
vertex of N(Imψϕ), F (ψϕ + i) = F (ψϕ) ∪ N(Im(ψϕ)). Hence, Q(ψϕ +
i) = Q(ψϕ) ∪ N(Im(ψϕ)). Let x1 ∈ Γ1; then ϕ(x1) ∈ K(ψ) (or F (ψ)).
Hence, there is ϕ(y1) ∈ Q(ψ), where ϕ(x1) 6= ϕ(y1) (ϕ(x1) ≁ ϕ(y1))
and ψϕ(x1) = ψϕ(y1) (ψϕ(x1) ∼ ψϕ(y1)). Since ϕ is a homomorphism,
x1 6= y1 (x1 ≁ y1). Thus, x1 ∈ Q(ψϕ). Therefore, Γ1 = Qψϕ and Q(ψϕ+
i) = V (Γ1) ∪N(Im(ψϕ)).

Theorem 4. Consider the short exact sequence (2). The following condi-
tions are equivalent:

(1) I◦ϕ is an isolated vertex of Γ2/Iϕ,
(2) I◦ψϕ is an isolated vertex of Γ3/Iψϕ and Γ3 = Imψϕ+ψϕΓ3,

(3) The short exact sequences K0 → Γ1
i
−֒→ Γ1+ψϕΓ3

ψ′

−→ Imψϕ+ψϕΓ3 →
K
◦
1 and (2) are isomorphic.

Proof. (1) ⇒ (2) By Remark (3)(b), I◦ψϕ is an isolated vertex of Γ3/Iψϕ.
Hence graphs ψϕΓ3 and Imψϕ are disjoint and Γ3 = Imψϕ+ψϕΓ3.

(2) ⇒ (3) We define the function η2 : Γ2 → Γ1+ψϕ Γ3, which η2(x2) =
ϕ−1(x2) if x2 ∈ Im(ϕ); otherwise, η2(x2) = ψ(x2). By the fact that the
graphs ψϕΓ3 and Imψϕ are disjoint, one has x2 ≁ y2, where x2 ∈ Im(ϕ)
and y2 ∈ V (ϕΓ2). So, the map η2 is a homomorphism. By Lemma 1, the
following diagram with exact rows commutes:

K0
// Γ1

ϕ
//

idΓ1

��

Γ2
ψ

//

η2

��

Γ3
//

idΓ3

��

K
◦
1

K0
// Γ1

i
// Γ1 +ψϕ Γ3

ψϕ+id
// Imψϕ+ψϕΓ3

// K
◦
1

Thus, η2 is an isomorphism by Theorem 2. Therefore, this diagram repre-
sents an isomorphism of short exact sequences.

(3) ⇒ (1) Let η1, η2 and η3 be isomorphisms and the following diagram
with exact rows commutes:

K0
// Γ1

ϕ
//

η1

��

Γ2
ψ

//

η2

��

Γ3
//

η3

��

K
◦
1

K0
// Γ1

i
// Γ1 +ψϕ Γ3

ψϕ+id
// Imψϕ+ψϕΓ3

// K
◦
1
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Suppose that there are x2 ∈ Im(ϕ) and y2 ∈ V (ϕΓ2), where x2 ∼ y2
and ϕ(x1) = x2 (i.e., I◦ϕ is not an isolated vertex of Γ2/Iϕ). Hence,
η2ϕ(x1) ∼ η2(y2), where η2(y2) /∈ V (Γ1). Therefore, η1(x1) ∼ η2(y2),
where η1(x1) ∈ V (Γ1). It is a contradiction since the subgraphs Γ1 and

ψϕΓ3 of Γ1 +ψϕ Γ3 are disjoint.

A homomorphism f from G to f(G) ⊆ H is called a retraction if there
exists a monomorphism g from f(G) to G such that fg = idf(G). In this
circumstance, f(G) is called a retract of G, and G is called a coretract of
f(G) while g is called a coretraction.

Theorem 5. Let φ : Γ → Υ be an epimorphism of graph. The restriction
φ|Fφ is retraction if and only if φ is a retraction. In particular, let the
sequence (2) be short exact. The epimorphism ψ is a retraction if and only
if the subgraph Imψϕ is a retract of Imϕ.

Proof. Let φ|Fφ is retraction with φ′1 it’s coretraction. Since the restriction
of φ to F (φ)Γ is a strong homomorphism and φ is an epimorphism, there
is a coretraction φ′2 : UΥ → F (φ)Γ, where U = Im(φ|Fφ). Define the
homomorphism φ′ : Υ → Γ which φ′(u) = φ′1(u) if u ∈ Im(φ|Fφ); otherwise,
φ′(u) = φ′2(u). Suppose that x ≁ y, where x ∈ V (Γ) \ F (φ) and y ∈ F (φ).
Then φ(x) ≁ φ(y). Therefore, φφ′ = idΥ and φ is a retraction. Conversely,
it is clear. The “in particular” statement is clear since F (ψ) ⊆ Im(ϕ).

Lemma 2. Let φ : Γ → Υ be a homomorphism of graph and let Θ be a
subgraph of Υ induced by Im(φ)∪N(Im(φ)). Then Υ is a retract of Γ+Υ
and the following sequence is short exact:

K0 → Γ + Θ
i
−֒→ Γ + Υ

φ+idΥ−−−−→ Υ → K
◦
1.

Proof. It is clear that i and φ+idΥ are strong monomorphism and epimor-
phism, respectively. Obviously, Kφ+idΥ = (φ + idΥ)

−1(Imφ) = Γ + Imφ.
Let y ∈ N(Im(φ)), where N(Imφ) is a subgraph of Υ. Then there is
φ(x1) ∈ Im(φ) such that φ(x1) ∼ y in Υ and x1 ≁ y in Γ + Υ. Therefore,
Qφ+idΥ = Γ +Θ since Imφ and V (Θ)Υ are disjoint.

2. Graph functors

In this section, we introduce some functors induced by operations on
graphs with an observation to exactness of them.
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Definition 9. Let Γ be a graph. For every graph Γ1 define the Cartesian
product functor ∨Γ(Γ1) = Γ12Γ which is a covariant endofunctor. It is
easily verified that if ϕ : Γ1 → Γ2 is a homomorphism, then ∨Γ(ϕ) = ϕ×idΓ
given by ∨Γ(ϕ)(x1, x) = (ϕ(x1), x) is a homomorphism.

Let C and D be categories. A functor F : C → D preserves a property
P of a morphism f in C if F (f) in D also has the property P. We say
that F reflects a property P if f has P in C whenever F (f) has P in D.
Analogous definitions can be made with respect to properties of objects.
It is clear that every functor preserves commutative diagrams. According
to the definition of the functor ∨, we have the following corollary.

Corollary 1. The functor ∨ preserves and reflects injective mappings,
surjective mappings, retractions and coretractions.

Note that in general, the functor ∨ does not preserve strong homo-
morphisms. In the next theorem, it will be determined that the functor ∨
is exact.

Theorem 6. Let Γ be a graph. The sequence (2) is exact if and only if
the sequence

K0 → Γ12Γ
(ϕ,idΓ)
−−−−→ Γ22Γ

(ψ,idΓ)
−−−−→ Γ32Γ → K

◦
1 (3)

is exact.

Proof. By Corollary 1, (ϕ, idΓ) is a monomorphism and (ψ, idΓ) is an
epimorphism. Suppose that (ϕ(x1), x) ∼ (ϕ(y1), y) in Γ22Γ. If ϕ(x1) =
ϕ(y1) and x ∼ y, then (x1, x) ∼ (y1, y) since ϕ is a monomorphism. If
ϕ(x1) ∼ ϕ(y1) and x = y, then (x1, x) ∼ (y1, y) since the homomorphism
ϕ is strong. Therefore, (ϕ, idΓ) is a strong homomorphism. Now, let
(ϕ(x1), x) ∈ Im(ϕ×idΓ), then ϕ(x1) ∈ Q(ψ) since Im(ϕ) = Q(ψ). Suppose
that ϕ(x1) ∈ K(ψ); there is y2 ∈ K(ψ) where y2 6= ϕ(x1) and ψ(y2) =
ψϕ(x1). Hence (ϕ(x1), x), (y2, x) ∈ K(ψ × idΓ). Suppose that ϕ(x1) ∈
F (ψ). By the same way with replacing “=” by “∼”, one has (ψϕ(x1), x) ∼
(ψ(y2), x) in Γ32Γ and so, (ϕ(x1), x) ∈ F (ψ × idΓ). Therefore, Im(ϕ ×
idΓ) ⊆ Q(ψ × idΓ). Let (x2, x) ∈ K(ψ × idΓ), then there is (y2, y) ∈
K(ψ × idΓ), where (y2, y) 6= (x2, x) and ψ × idΓ(y2, y) = ψ × idΓ(x2, x).
Hence, x = y and ψ(x2) = ψ(y2), where x2 6= y2. So, x2 ∈ K(ψ) and there
is x1 ∈ Γ1, where ϕ(x1) = x2 since Im(ϕ) = Q(ψ). Therefore, (x2, x) ∈
Im(ϕ × idΓ). If (x2, x) ∈ F (ψ × idΓ), then there is (y2, y) ∈ F (ψ × idΓ),
where (y2, y) ≁ (x2, x) in Γ22Γ and ψ × idΓ(y2, y) ∼ ψ × idΓ(x2, x) in
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Γ32Γ. Thus either y = x and ψ(x2) ∼ ψ(y2) or y ∼ x and ψ(x2) = ψ(y2).
Suppose that y = x; then x2 ≁ y2 since (y2, y) ≁ (x2, x). Since ψ(x2) ∼
ψ(y2), x2 ∈ F (ψ) and there is x1 ∈ Γ1 where ϕ(x1) = x2. Therefore,
(ϕ(x1), x) ∈ Im(ϕ× idΓ). Now, suppose that ψ(x2) = ψ(y2). Then x2 6= y2
since y ∼ x and (y2, y) ≁ (x2, x) in Γ22Γ. Hence, x2 ∈ K(ψ) and so
there is x1 ∈ Γ1 where ϕ(x1) = x2. Thus (ϕ(x1), x) ∈ Im(ϕ × idΓ) and
Q(ψ × idΓ) ⊆ Im(ϕ× idΓ). Therefore, Q(ψ × idΓ) = Im(ϕ× idΓ) and the
sequence (3) is short exact.

Conversely, let the sequence (3) be exact for some Γ. Since ϕ× idΓ is
a strong monomorphism and ψ × idΓ is an epimorphism, ϕ is a strong
monomorphism and ψ is an epimorphism in the sequence (2). Let x2 ∈
Im(ϕ), where ϕ(x1) = x2. Then (ϕ(x1), x) ∈ Im(ϕ× idΓ). Since Im(ϕ×
idΓ) = Q(ψ × idΓ), (ϕ(x1), x) ∈ Q(ψ × idΓ). By the same way in the
previous part (Concerning Q(ψ × idΓ) ⊆ Im(ϕ× idΓ)), It is easy to show
that ϕ(x1) = x2 ∈ Q(ψ) and so Im(ϕ) ⊆ Q(ψ). Let x2 ∈ Q(ψ). By the
same way in the previous part (Concerning Im(ϕ× idΓ) ⊆ Q(ψ × idΓ)),
It is easy to show that x2 ∈ Im(ϕ). Therefore, the sequence (2) is short
exact.

Definition 10. Let Γ be a graph. For every graph Γ1 define the direct
product functor ∧Γ(Γ1) = Γ1 × Γ which is a covariant endofunctor. It is
easily verified that if ϕ : Γ1 → Γ2 is a homomorphism, then ∧Γ(ϕ) = ϕ×idΓ
given by ∧Γ(ϕ)(x1, x) = (ϕ(x1), x) is a homomorphism.

Let (ϕ(x1), x) ∼ (ϕ(y1), y); then ϕ(x1) ∼ ϕ(y1) and x ∼ y. If the ho-
momorphism ϕ is strong, then ∧(ϕ) is a strong homomorphism. Moreover,
according to the definition of the functor ∧ the following corollary holds.

Corollary 2. The direct product functor ∧ preserves and reflects injective
mappings, surjective mappings, strong homomorphisms, retractions and
coretractions.

In the next theorem, it will be determined that the functor ∧ is exact
if Γ is a graph of minimum degree k > 1.

Theorem 7. Consider the short exact sequence (2). Let Γ be a graph of
minimum degree k > 1, then

K0 → Γ1 × Γ
(ϕ,idΓ)
−−−−→ Γ2 × Γ

(ψ,idΓ)
−−−−→ Γ3 × Γ → K

◦
1 (4)

is a short exact sequence of graphs. In particular, if Γ is a connected graph,
then the functor ∧ is exact.
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Proof. By Corollary 2, (ϕ, idΓ) is a strong monomorphism and (ψ, idΓ) is
an epimorphism. Let (ϕ(x1), x) ∈ Im(ϕ× idΓ); then ϕ(x1) ∈ Q(ψ) since
Im(ϕ) = Q(ψ). Suppose that ϕ(x1) ∈ K(ψ). By the similar way as the
proof of Theorem 6, (ϕ(x1), x) ∈ K(ψ× idΓ). Suppose that ϕ(x1) ∈ F (ψ),
then there is y2 ∈ F (ψ) where y2 ≁ ϕ(x1) and ψ(y2) ∼ ψϕ(x1). Since
deg(x) > 1, it has an adjacent y ∈ Γ where (ψ(y2), y) ∼ (ψϕ(x1), x) in
Γ3 × Γ. Therefore, (ϕ(x1), x) ∈ F (ψ × idΓ) since (ϕ(x1), x) ≁ (y2, y) in
Γ2 × Γ. Let (x2, x) ∈ K(ψ × idΓ). By the same reason in the proof of
Theorem 6, (x2, x) ∈ Im(ψ × idΓ). Now, if (x2, x) ∈ F (ψ × idΓ), then
there is (y2, y) ∈ F (ψ × idΓ), where (y2, y) ≁ (x2, x) in Γ2 × Γ and
ψ× idΓ(y2, y) ∼ ψ× idΓ(x2, x) in Γ3×Γ. Hence, x ∼ y and ψ(x2) ∼ ψ(y2).
It is clear from (y2, y) ≁ (x2, x), that x2 ≁ y2 and so x2 ∈ F (ψ). Hence,
there is x1 ∈ Γ1 where ϕ(x1) = x2. Thus (x2, x) ∈ Im(ϕ× idΓ). Therefore,
Q(ψ × idΓ) = Im(ϕ × idΓ) and the sequence (4) is short exact. The “in
particular” statement is clear.

Theorem 8. Let Γ be a non-empty graph. If the sequence (4) is exact,
then the sequence (2) is exact.

Proof. By Corollary 2, ϕ and ψ are strong monomorphism and epimor-
phism, respectively. By the same way as in the proof of Theorem 7 (Con-
cerning Q(ψ × idΓ) ⊆ Im(ϕ× idΓ)), It is easy to see that if x2 ∈ Im(ϕ),
then x2 ∈ Q(ψ). By the similar way as in the proof of Theorem 7 (Con-
cerning Im(ϕ × idΓ) ⊆ Q(ψ × idΓ)), It is easy to see that if x2 ∈ K(ψ),
then x2 ∈ Im(ϕ). Let x2 ∈ F (ψ), then there is y2 ∈ F (ψ) where y2 ≁ x2
and ψ(y2) ∼ ψ(x2). Since E(Γ) 6= ∅, there are x, y ∈ Γ where x ∼ y.
Hence (x2, x) ≁ (y2, y) in Γ2 × Γ where ψ × idΓ(y2, y) ∼ ψ × idΓ(x2, x)
in Γ3 × Γ. Thus (x2, x) ∈ F (ψ × idΓ) and so (x2, x) ∈ Im(ϕ× idΓ) since
F (ψ × idΓ) = Im(ϕ× idΓ). Hence x2 ∈ Im(ϕ) and F (ψ) ⊆ Im(ϕ). There-
fore, the sequence (2) is short exact.

Remark 4. (a) Let Γ = Γ12Γ22 · · ·2Γk, then the inclusion map ιYi :
Γi → Γ with respect to Yi given by

xi 7→ (y1, · · · , yi−1, xi, yi+1, · · · , yk),

is a monomorphism where Yi = (y1, · · · , yi−1, yi+1, · · · , yk−1) ∈
V (Γ12 · · ·2Γi−12Γi+12 · · ·2Γk−1). Further, let Υ = Υ1 ×Υ2 × · · · ×Υk.
By simple rewording of the definitions, each projection pi : Υ → Υi

is a homomorphism. Furthermore, given a graph T and a collection of
homomorphisms τi : T → Υi, for 1 6 i 6 k, observe that the map



“adm-n3” — 2019/10/20 — 9:35 — page 15 — #17

A. Abbasi , A. Ramin 15

τ : x 7→ (τ1(x), τ2(x), · · · , τk(x)) is a homomorphism T → Υ. From the
two facts just mentioned, we see that every homomorphism τ : T → Υ
has the form τ : x 7→ (τ1(x), τ2(x), · · · , τk(x)), for homomorphisms
τi : T → Υi, where τi = piτ . Clearly τ is uniquely determined by pi
and τi.

(b) Consider the short exact sequence (2). By Theorem 6 and part (a),
the following diagram with exact rows determines a homomorphism of
short exact sequences:

K0
// Γ1

ϕ
//

ιy

��

Γ2
ψ

//

ιy

��

Γ3
//

ιy

��

K
◦
1

K0
// Γ12Γ

ϕ×idΓ
// Γ22Γ

ψ×idΓ
// Γ32Γ // K

◦
1

where ιy : Γi → Γi2Γ with 1 6 i 6 3 for some y ∈ V (Γ).
(c) Let Γ be a graph with E(Γ) 6= ∅ and let the sequence (4) be

exact. By Theorem 8 and part (a), the following diagram with exact rows
determines a homomorphism of short exact sequences:

K0
// Γ1 × Γ

ϕ×idΓ
//

p1

��

Γ2 × Γ
ψ×idΓ

//

p2

��

Γ3 × Γ //

p3

��

K
◦
1

K0
// Γ1

ϕ
// Γ2

ψ
// Γ3

// K
◦
1

where pi : Γi × Γ → Γi for 1 6 i 6 3.

Lemma 3. Let Υ be a graph and ϕ is a homomorphism from Γ1 to Γ2.
(1) ϕ̂ is a homomorphism from Γ1

Υ to Γ2
Υ.

(2) ϕ̌ is a homomorphism from ΥΓ2 to ΥΓ1 .

Proof. (1) Suppose that f1 and g1 are adjacent vertices of Γ1
Υ. Then

f1(u) ∼ g1(y) where u, y ∈ V (Υ) and u ∼ y. Hence ϕf1(u) ∼ ϕg1(y)
for every u ∼ y. Therefore, ϕ̂(f1) ∼ ϕ̂(g1).

(2) It follows from [1, Theorem 6.4.1].

Based on the above lemma, we define a map functor as follows.

Definition 11. Let Γ be a graph. For every graph Γ1 define the map
functor Map(Γ,Γ1) = Γ1

Γ which is a covariant endofunctor. Let ϕ : Γ1 →
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Γ2 be a homomorphism, then

Map(Γ, ϕ) = ϕ̂ : Map(Γ,Γ1) → Map(Γ,Γ2)

given by f1 7→ ϕf1 is a homomorphism. Also, the map functorMap(−,Γ) =
Γ− is defined as a contravariant endofunctor and

Map(ϕ,Γ) = ϕ̌ : Map(Γ2,Γ) → Map(Γ1,Γ)

given by f2 7→ f2ϕ is a homomorphism.

By the above definition, it is easy to check that the following corollary
holds.

Corollary 3. The map functor Map(Γ,−) preserves and reflects retrac-
tions and coretractions. Moreover, the map functor Map(−,Γ) maps re-
traction and coretraction to coretraction and retraction, respectively.

In the next theorem, it will be determined the map functor Map(Γ,−)
preserves and reflects injective mappings, surjective mappings and strong
homomorphisms. Further, it preserves the complexes if ψ(Fψ) is a clique
of Γ3 and it reflects the semi-exact sequences.

Theorem 9. Let Γ,Γ1,Γ2 and Γ3 be graphs where E(Γ) 6= ∅.

(1) Let the sequence Γ1
ϕ
−→ Γ2

ψ
−→ Γ3 be a complex. Suppose that ψ(Fψ)

is a clique (with loop) of Γ3, then the following sequence is a complex:

Γ1
Γ ϕ̂
−→ Γ2

Γ ψ̂
−→ Γ3

Γ. (5)

Moreover, if ϕ is a strong monomorphism, then ϕ̂ is a strong monomor-
phism. If ψ is an epimorphism, then so is ψ̂.

(2) Let the following sequence is semi-exact

K0 → Γ1
Γ ϕ̂
−→ Γ2

Γ ψ̂
−→ Γ3

Γ → K
◦
1, (6)

then the sequence (2) is semi-exact. In particular, if the sequence (6) is
exact for every Γ, then the sequence (2) is exact.

Proof. (1) Let f2 ∈ Im(ϕ̂), then there is f1 ∈ V (Γ1
Γ) where f2 = ϕf1.

Since Im(ϕ) ⊆ Q(ψ), Im(f2) ⊆ Q(ψ). Suppose that f2(y) ∈ K(ψ) for some
y ∈ V (Γ), then there is x2 ∈ Γ2 where x2 6= f2(y) and ψ(x2) = ψf2(y).
Define g2 : Γ → Γ2 with g2(y) = x2 and g2(x) = f2(x) for all elements
x other than y. Hence g2 6= f2 and ψf2 = ψg2. Therefore, ψ̂(f2) = ψ̂(g2)
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and f2 ∈ K(ψ̂). Let f2(x) ∈ F (ψ) for all x ∈ V (Γ). Since E(Γ) 6= ∅,
there are y, z ∈ V (Γ) where y ∼ z. On the other hand, there is x2 ∈ Γ2,
where x2 ≁ f2(y) and ψ(x2) ∼ ψf2(y). Define g2(x) = x2 for all x ∈ V (Γ).
Since y ∼ z and f2(y) ≁ g2(z), we have f2 ≁ g2. By the fact that ψ|Fψ
is a complete graph, one has ψf2(x) ∼ ψg2(x). Hence, ψ̂(f2) ∼ ψ̂(g2)
where f2 ≁ g2 and so f2 ∈ F (ψ̂). Therefore, Im(ϕ̂) ⊆ Q(ψ̂) and the
sequence (5) is a complex. Moreover, suppose that ϕ̂(f1) = ϕ̂(g1), then
ϕf1 = ϕg1. Hence, f1 = g1 since ϕ is a monomorphism. If ϕ̂(f1) ∼ ϕ̂(g1),
then ϕf1(y) ∼ ϕg1(z) for every y ∼ z in Γ. Hence, f1(y) ∼ g1(z) for every
y ∼ z in Γ since the homomorphism ϕ is strong. Therefore, f1 ∼ g1 and ϕ̂ is
a strong homomorphism. Now let f3 ∈ V (Γ3

Γ). Since ψ is an epimorphism,
function f2 can be defined f2(x) = x2 for some x2 ∈ ψ−1(f3(x)). Hence,
ψf2(x) = f3(x). Therefore, ψ̂(f2) = f3 and so ψ̂ is an epimorphism.

(2) First it is shown that ϕ and ψ are monomorphism and epimorphism,
respectively. Let ϕ(x1) = ϕ(y1), then there are f1, g1 ∈ V (Γ1

Γ) where
f1(x) = x1 and g1(x) = y1 for all x ∈ V (Γ) since Γ 6= K0. Hence ϕ̂(f1) =
ϕ̂(g1). Since ϕ̂ is a monomorphism, f1(x) = x1 = y1 = g1(x) and so ϕ is a
monomorphism. Let x3 ∈ V (Γ3), then there is f3 ∈ V (Γ3

Γ) where f3(x0) =
x3 for some x0 ∈ V (Γ). Since ψ̂ is an epimorphism, there is f2 ∈ V (Γ2

Γ)
where ψf2(x) = f3(x) for every x ∈ V (Γ). Hence ψ(x2) = f3(x0) = x3
where, f2(x0) = x2 and so ψ is an epimorphism. Now let x2 ∈ Q(ψ), then
there is y2 ∈ Q(ψ) where either y2 6= x2 and ψ(x2) = ψ(y2) or y2 ≁ x2 and
ψ(x2) ∼ ψ(y2). Define f2(x) = x2 and g2(x) = y2 where f2, g2 ∈ V (Γ2

Γ).
Hence, either f2 6= g2 and ψ̂(f2) = ψ̂(g2) or f2 ≁ g2 and ψ̂(f2) ∼ ψ̂(g2)
since E(Γ) 6= ∅ and ψ(x2) ∼ ψ(y2). So f2 ∈ Q(ψ̂) ⊆ Im(ϕ̂) since the
sequence (6) is semi-exact. Thus there is f1 ∈ V (Γ1

Γ) where ϕ̂(f1) = f2.
Hence, ϕf1(x) = f2(x) = x2 and so x2 ∈ Im(ϕ). Therefore, Q(ψ) ⊆ Im(ϕ)
and the sequence (2) is semi-exact. For the “in particular” statement, it is
sufficient to set Γ = K

◦
1.

Lemma 4. Let ϕ : Γ1 → Γ2 be a homomorphism of graphs. Consider the
homomorphism ϕ̌ : ΓΓ2 → ΓΓ1 where |V (Γ)| > 2.

(1) ϕ is not surjective if and only if Kϕ̌ = Qϕ̌ = ΓΓ2 .
(2) If ϕ is an epimorphism, then ϕ̌ is a strong monomorphism. If ϕ̌ is

a monomorphism, then ϕ is an epimorphism.
(3) ϕ is injective if and only if ϕ̌ is an epimorphism.

Proof. (1) Let f2 ∈ V (ΓΓ2). Obviously, there is g2 ∈ V (ΓΓ2) where g2 6= f2
and g2ϕ = f2ϕ since Im(ϕ) 6= V (Γ2) and |V (Γ)| > 2. Therefore, f2 ∈ K(ϕ̌).
Conversely, Let f2 ∈ V (ΓΓ2) = K(ϕ̌). Hence there is g2 ∈ V (ΓΓ2) where
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g2 6= f2 and g2ϕ = f2ϕ. Now if ϕ is an epimorphism, then f2 = g2, a
contradiction. Therefore, the homomorphism ϕ is not surjective.

(2) Let ϕ̌(f2) = ϕ̌(g2), then f2ϕ(x1) = g2ϕ(y1) for all x1 = y1 in Γ1.
By the fact that ϕ is an epimorphism, f2 = g2 for all x1 = y1 in Γ1 and
so ϕ̌ is a monomorphism. By the same way with replacing “=” by “∼”,
the homomorphism ϕ̌ is strong. By part (1), if the homomorphism ϕ is
not surjective, then ΓΓ2 = Kϕ̌ 6= ∅. Therefore, the homomorphism ϕ̌ is
not injective.

(3) Let f1 ∈ V (ΓΓ1). Obviously, there is f2 ∈ V (ΓΓ2) where f1(x1) =
f2ϕ(x1) for every x1 ∈ V (Γ1). So, ϕ̌(f2) = f1 and ϕ̌ is an epimorphism.
Since |V (Γ)| > 2, there is f1 ∈ V (ΓΓ1) such that f1(x1) 6= f1(y1). Suppose
that the homomorphism ϕ is not injective, then there are x1 6= y1 in Γ1

where ϕ(x1) = ϕ(y1). Since ϕ̌ is an epimorphism, there is f2 ∈ V (ΓΓ2)
where ϕ̌(f2) = f1. It is a contradiction to f2ϕ(x1) = f1(x1) 6= f1(y1) =
f2ϕ(y1) since ϕ(x1) = ϕ(y1). Therefore, ϕ must be a monomorphism.

Theorem 10. Consider the sequence (2) where, Γ3 6= K0 and let |V (Γ)|>2.
The following conditions are equivalent:

(1) The map functor Map(−,Γ) is exact.
(2) The homomorphism ϕ is not surjective and ψ is a monomorphism.
(3) Imψ̌ = ΓΓ2 = Kϕ̌.

Proof. (1) ⇒ (2) Suppose that ϕ is an epimorphism, then ϕ̌ is a strong
monomorphism by Lemma 4(2). Hence Q(ϕ̌) = ∅ and so | Im(ψ̌)| = 0 or
1 since the map functor Map(−,Γ) is exact. Hence |ΓΓ3 | = 0 or 1 since ψ̌
is a strong monomorphism. It is contradiction to |V (Γ)| > 2 and Γ3 6= K0.
Hence the homomorphism ϕ is not surjective and so Kϕ̌ = Qϕ̌ = ΓΓ2 by
Lemma 4(1). Since the map functor Map(−,Γ) is exact, Imψ̌ = Qϕ̌ =

ΓΓ2 and so ψ̌ is an epimorphism. Therefore, ψ is a monomorphism by
Lemma 4(3).

(2) ⇒ (3) By Lemma 4(1)(2), Kϕ̌ = Qϕ̌ = ΓΓ2 and ψ̌ is an epimor-
phism. Hence Imψ̌ = Qϕ̌ = ΓΓ2 .

(3) ⇒ (1) Since ψ is an epimorphism and ϕ is a strong monomorphism,
ψ̌ and ϕ̌ are strong monomorphism and epimorphism by Lemma 4(2)(3),
respectively. Therefore, the map functor Map(−,Γ) is exact.

Let Γi’s be graphs with 1 6 i 6 k. Then Γ1 + Γ2 + · · · + Γk and

Γ1 × Γ2 × · · · × Γk are denoted by
k∑

i=1
Γi and

k

×
i=1

Γi, respectively.

Theorem 11. Let Γi’s be graphs with 1 6 i 6 k and let Γ be a finite
graph. The following statements hold:
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(1) (a) ∨Γ(
k∑

i=1
Γi) =

k∑

i=1
∨Γ(Γi).

(b) ∧Γ(
k∑

i=1
Γi) =

k∑

i=1
∧Γ(Γi).

(2) (a) Map(
k∑

i=1
Γi,Γ) =

k

×
i=1

Map(Γi,Γ).

(b) Map(Γ,
k

×
i=1

Γi) =
k

×
i=1

Map(Γ,Γi).

(3) Map(
k

×
i=1

Γi,Γ) = Map(Γk,Map(
k−1

×
i=1

Γi,Γ)).

Proof. Part (1) follows from [5, Theorem 4.5.3], and part (2),(3) follow
from [3, Chapter 9.4].

So for the direct product functor and the map functor, here is a behavior
similar to the tensor product functor and Hom functor in algebra.
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