Lie algebras of derivations with large abelian ideals

I. S. Klymenko, S. V. Lysenko, and A. P. Petravchuk

Abstract. Let \mathbb{K} be a field of characteristic zero, $A=$ $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring and $R=\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ the field of rational functions. The Lie algebra $\widetilde{W}_{n}(\mathbb{K}):=\operatorname{Der}_{\mathbb{K}} R$ of all \mathbb{K} derivation on R is a vector space (of dimension n) over R and every its subalgebra L has rank $\mathrm{rk}_{R} L=\operatorname{dim}_{R} R L$. We study subalgebras L of rank m over R of the Lie algebra $\widetilde{W}_{n}(\mathbb{K})$ with an abelian ideal $I \subset L$ of the same rank m over R. Let F be the field of constants of L in R. It is proved that there exist a basis D_{1}, \ldots, D_{m} of $F I$ over F, elements $a_{1}, \ldots, a_{k} \in R$ such that $D_{i}\left(a_{j}\right)=\delta_{i j}$, $i=1, \ldots, m, j=1, \ldots, k$, and every element $D \in F L$ is of the form $D=\sum_{i=1}^{m} f_{i}\left(a_{1}, \ldots, a_{k}\right) D_{i}$ for some $f_{i} \in F\left[t_{1}, \ldots t_{k}\right], \operatorname{deg} f_{i} \leqslant 1$. As a consequence it is proved that L is isomorphic to a subalgebra (of a very special type) of the general affine Lie algebra $\operatorname{aff}_{m}(F)$.

Introduction

Let \mathbb{K} be a field of characteristic zero, $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring and $R=\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ the field of rational functions in n variables. The Lie algebra $\widetilde{W}_{n}(\mathbb{K}):=\operatorname{Der}_{\mathbb{K}} R$ of all \mathbb{K}-derivation on R is of great interest because in case $\mathbb{K}=\mathbb{R}$, the field of real numbers, elements of $\widetilde{W}_{n}(\mathbb{K})$ (which are of the form

$$
\left.D=f_{1} \frac{\partial}{\partial x_{1}}+\cdots+f_{n} \frac{\partial}{\partial x_{n}}, f_{i} \in R\right)
$$

[^0]can be considered as vector fields on the manifold \mathbb{K}^{n} with rational coefficients $f_{1}, \ldots, f_{n} \in R$. Note that in case $\mathbb{K}=C$ or $\mathbb{K}=R$ the Lie algebras $\widetilde{W}_{1}(\mathbb{K})$ and $\widetilde{W}_{2}(\mathbb{K})$ were studied by S . Lie [7], A. González-López, N. Kamran and P. J. Olver [2] and others from the viewpoint of structure of finite-dimensional subalgebras.

Since $\widetilde{W}_{n}(\mathbb{K})$ is a vector space of dimension n over R one can define the rank $\mathrm{rk}_{R} L$ over R for any subalgebra $L \subseteq \widetilde{W}_{n}(\mathbb{K})$ by the rule: $\mathrm{rk}_{R} L:=$ $\operatorname{dim}_{R} R L$. We study subalgebras $L \subseteq \widetilde{W}_{n}(\mathbb{K})$ of rank m over R which have an abelian ideal I of the same rank m over R. A natural basis over F, the field of constants for L in R, for such Lie algebras is built. Note that analogous results in cases $n=2$ and $n=3$ were obtained in [3] and in [1], in case $m=n$ such a basis can be built using results of [6]. As a corollary one can prove that the Lie algebra $F L$ over the field F can be isomorphically embedded into the general affine Lie algebra aff $m(F)$. This result can be used to study solvable finite dimensional subalgebras $L \subseteq \widetilde{W}_{n}(\mathbb{K})$ because such Lie algebras (over an algebraically closed field of characteristic zero) have a series of ideals

$$
0 \subset L_{1} \subset L_{2} \subset \ldots \subset L_{m}=L \quad \text { with } \mathrm{rk}_{R} L_{s}=s, s=1, \ldots, m
$$

We use standard notation. The ground field \mathbb{K} is arbitrary of characteristic zero. Recall that the general affine Lie algebra $\operatorname{aff}_{m}(\mathbb{K})$ is the semidirect product $\operatorname{aff}_{m}(\mathbb{K})=\mathrm{gl}_{m}(\mathbb{K})<V_{m}$, where V_{m} is a vector space over \mathbb{K} of dimension m with a zero multiplication and the general linear Lie algebra $\mathrm{gl}_{m}(\mathbb{K})$ acts on V_{m} in the natural way. If $L \subseteq \widetilde{W}_{n}(\mathbb{K})$ is a subalgebra, then the field of constants for L in R is the subfield of the field R of the form $F(L)=\{r \in R \mid D(r)=0$ for all $D \in L\}$.

1. Preliminary results

The next two lemmas contain some technical results about derivations (see for example, [5] or [3]).

Lemma 1. Let $D_{1}, D_{2} \in \widetilde{W}_{n}(\mathbb{K})$ and $a, b \in R$. Then:

1) $\left[a D_{1}, b D_{2}\right]=a b\left[D_{1}, D_{2}\right]+a D_{1}(b) D_{2}-b D_{2}(a) D_{1}$,
2) if $\left[D_{1}, D_{2}\right]=0$, then $\left[a D_{1}, b D_{2}\right]=a D_{1}(b) D_{2}-b D_{2}(a) D_{1}$,
3) if $a, b \in \operatorname{Ker} D_{1} n \operatorname{Ker} D_{2}$, then $\left[a D_{1}, b D_{2}\right]=a b\left[D_{1}, D_{2}\right]$.

Let L be a subalgebra of $\widetilde{W}_{n}(\mathbb{K})$ and $F=F(L)$ its field of constants. Then the set $F L$ of all linear combinations of elements $a D$, where $a \in F$, $D \in L$ is a Lie algebra over the field F.

Lemma 2. If L is an abelian, nilpotent or solvable subalgebra of $\widetilde{W}_{n}(\mathbb{K})$, then so is $F L$ respectively.

Lemma 3. Let L be a subalgebra of rank $m \geqslant 1$ over R of the Lie algebra $\widetilde{W}_{n}(\mathbb{K})$ and let L contain a proper abelian ideal I of the same rank m over R. If an inner derivation ad T for some $T \in L$ is of rank k on the F space FI (as a linear operator), then there exist a basis T_{1}, \ldots, T_{m} of $F I$ over F and elements $a_{1}, \ldots, a_{k} \in R$ such that $T_{i}\left(a_{j}\right)=\delta_{i j}, i=1, \ldots, m$, $j=1, \ldots, k$. Besides, T can be written in the form

$$
T=f_{1}\left(a_{1}, \ldots, a_{k}\right) T_{1}+\ldots+f_{m}\left(a_{1}, \ldots, a_{k}\right) T_{m}
$$

for some $f_{i} \in F\left[t_{1}, \ldots, t_{k}\right]$, $\operatorname{deg} f_{i} \leqslant 1, i=1, \ldots, m$.
Proof. Choose any basis D_{1}, \ldots, D_{m} of the vector space $F I$ over F. Since by [3] (Lemma 3) $\mathrm{rk}_{R} I=\operatorname{dim}_{F} F I$ it holds $T=a_{1} D_{1}+\ldots+a_{m} D_{m}$ for some elements $a_{i} \in R$. Without loss of generality one can assume that $\left[D_{1}, T\right], \ldots,\left[D_{k}, T\right]$ form a basis of the vector space $T(F I)=[T, F I]$ (recall that the linear operator ad T is of rank k on $F I$ by the conditions of the lemma). Any element $\left[D_{s}, T\right], k+1 \leqslant s \leqslant m$, is a linear combination of $\left[D_{1}, T\right], \ldots,\left[D_{k}, T\right]$ over F, so we can choose D_{s} in such a way that $\left[D_{s}, T\right]=0$. The latter means that in this basis the matrix $B=\left(D_{i}\left(a_{j}\right)\right)$ is of the form

$$
B=\left(\begin{array}{ccc}
D_{1}\left(a_{1}\right) & \ldots & D_{1}\left(a_{m}\right) \\
\cdot & & \\
\cdot & & \\
D_{k}\left(a_{1}\right) & \ldots & D_{k}\left(a_{m}\right) \\
0 & \ldots & 0 \\
. & \ldots & . \\
0 & \ldots & 0
\end{array}\right)
$$

and the first k rows R_{1}, \ldots, R_{k} of B are linearly independent over the field F. Since the matrix B is of rank k over F we can choose k columns $C_{i_{1}}, \ldots, C_{i_{k}}$ of B which are linearly independent over F. It is easy to see that there exists a linear combination $\gamma_{11} R_{1}+\cdots+\gamma_{k 1} R_{k}$ of the first k rows R_{1}, \ldots, R_{k} of the matrix B such that

$$
\gamma_{11} R_{1}+\cdots+\gamma_{k 1} R_{k}=(*, \ldots \underbrace{1}_{i_{1}}, *, \ldots \underbrace{0}_{i_{2}}, * \ldots, \underbrace{0}_{i_{k}}, \ldots *)
$$

where the right side is the row with 1 on i_{1} st place, 0 on the i_{2} nd place, $\ldots, 0$ on the i_{k} th place. Denote $D_{1}^{\prime}=\gamma_{11} D_{1}+\cdots+\gamma_{k 1} D_{k}$. Then
$\left[D_{1}^{\prime}, T\right]=r_{1} D_{1}+\cdots+1 \cdot D_{i_{1}}+\cdots+0 \cdot D_{i_{2}}+\cdots+0 \cdot D_{i_{k}}+\cdots+r_{m} D_{m}$
for some $r_{i} \in R, i \notin\left\{i_{1}, \ldots, i_{k}\right\}$. The latter means that

$$
D_{1}^{\prime}\left(a_{i_{1}}\right)=1, \quad D_{1}^{\prime}\left(a_{i_{2}}\right)=0, \quad \ldots, \quad D_{1}^{\prime}\left(a_{i_{k}}\right)=0
$$

Analogously one can build $D_{2}^{\prime}, \ldots, D_{k}^{\prime}$ with properties $D_{j}^{\prime}\left(a_{i_{s}}\right)=\delta_{j s}$, $s=1, \ldots, k$. So we now have a basis $D_{1}^{\prime}, \ldots, D_{k}^{\prime}, D_{k+1}, \ldots, D_{m}$ of the vector space $F I$ over F. Denote for convenience $T_{1}=D_{1}^{\prime}, \ldots T_{k}=D_{k}^{\prime}, T_{k+1}=$ $D_{k+1}, \ldots, T_{m}=D_{m}$. Then we have $T_{j}\left(a_{i_{s}}\right)=\delta_{j s}, j, s=1, \ldots, k$. Besides, by the choice of the initial basis of the vector space $F I$ it holds $T_{k+1}\left(a_{i_{s}}\right)=0, \ldots, T_{m}\left(a_{i_{s}}\right)=0, s=1, \ldots, k$.

Further any column $C_{j}, j \notin\left\{i_{1}, \ldots, i_{s}\right\}$ is a linear combination of the columns $C_{i_{1}}, \ldots, C_{i_{k}}$ of the matrix B, so we can write down $C_{j}=$ $\beta_{1 j} C_{i_{1}}+\cdots+\beta_{k j} C_{i_{k}}$ for some $\beta_{i j} \in F$. Then

$$
D_{t}\left(a_{j}-\sum_{s=1}^{k} \beta_{s j} a_{i_{s}}\right)=0, \quad t=1, \ldots, m
$$

and therefore $a_{j}=\sum_{s=1}^{k} \beta_{s j} a_{i_{s}}+\delta_{j}, \delta_{j} \in F$. The latter means, that all the coefficients a_{j} are of the form

$$
a_{j}=f_{j}\left(a_{i_{1}}, \ldots, a_{i_{k}}\right), \quad f_{j} \in F\left[t_{1}, \ldots, t_{k}\right], \quad \operatorname{deg} f_{j} \leqslant 1
$$

After renumbering the elements $a_{i_{1}}, \ldots, a_{i_{k}}$ we get the proof of the last part of the lemma. The proof is complete.

Lemma 4. Let L be a subalgebra of rank m over R of the Lie algebra $\widetilde{W}_{n}(\mathbb{K})$ with an abelian ideal I of the same rank m over R and $D \in F L$. If there exist a basis D_{1}, \ldots, D_{m} of $F I$ over F and elements $a_{1}, \ldots, a_{k} \in R$ with $D_{i}\left(a_{j}\right)=\delta_{i j}, i=1, \ldots, m, j=1, \ldots, k$, then there exists an element $\bar{D} \in \widetilde{W}_{n}(\mathbb{K})$ such that $\left[D-\bar{D}, D_{i}\right]=0, i=1, \ldots, k$.

Proof. Since D_{1}, \ldots, D_{m} is a basis of L over R (see Lemma 3 in [3]) the element D can be written in the form

$$
D=s_{1} D_{1}+\cdots+s_{m} D_{m} \quad \text { for some } s_{i} \in R
$$

Then

$$
\left[D_{i}, D\right]=D_{i}\left(s_{1}\right) D_{1}+\cdots+D_{i}\left(s_{m}\right) D_{m}
$$

and therefore $D_{i}\left(s_{j}\right) \in F$ because $\left[D_{i}, D\right] \in F I$.
Denote $\alpha_{i j}=D_{i}\left(s_{j}\right), i, j=1, \ldots, m$ and consider elements $f_{j}=$ $\sum_{s=1}^{k} \alpha_{i j} a_{i}, j=1, \ldots, m$. Then $D_{i}\left(f_{j}\right)=\alpha_{i j}, i, j=1, \ldots, m$ and therefore $D_{i}\left(s_{j}-f_{j}\right)=0, i=1, \ldots, k, j=1, \ldots, m$. The latter means that $\left[D_{i}, D-\bar{D}\right]=0, i=1, \ldots, k$.

2. The main result

Theorem 1. Let L be a subalgebra of rank m over R of the Lie algebra $\widetilde{W}_{n}(\mathbb{K})$ with a proper abelian ideal $I \subset L$ of the same rank m over R and F be the field of constants for L. Then there exist a basis D_{1}, \ldots, D_{m} of the ideal FI over F and elements $a_{1}, \ldots, a_{k} \in R, k \geqslant 1$ such that $D_{i}\left(a_{j}\right)=\delta_{i j}, i=1, \ldots, m, j=1, \ldots, k$. Every element $D \in F L$ can be written in the form $D=\sum_{i=1}^{m} f_{i}\left(a_{1}, \ldots, a_{k}\right) D_{i}$ for some linear polynomials $f_{i} \in F\left[t_{1}, \ldots, t_{k}\right]$.

Proof. Take any element $D \in L \backslash I$. Then the inner derivation ad D on $F L$ is nonzero and by Lemma 3 there exist a basis D_{1}, \ldots, D_{m} of the vector space $F I$ over F and elements $a_{1}, \ldots, a_{k_{1}} \in R$ such that $D_{i}\left(a_{j}\right)=\delta_{i j}$, $i=1, \ldots, m, j=1, \ldots, k_{1}$ (here k_{1} is the rank of the linear operator ad D on $F I$). By the same Lemma 3 the element D can be written in the form

$$
\begin{equation*}
D=f_{1}\left(a_{1}, \ldots, a_{k_{1}}\right) D_{1}+\cdots+f_{m}\left(a_{1}, \ldots, a_{k_{1}}\right) D_{m} \tag{1}
\end{equation*}
$$

for some linear polynomials $f_{i} \in F\left[t_{1}, \ldots, t_{k_{1}}\right]$. If every element of the Lie algebra $F L$ can be expressed in such a form, then we put $k=k_{1}$ and the proof is complete. Let $T \in F L$ be any element that is not of form (1). Then by Lemma 4 there exists an element

$$
\bar{T}=\sum_{i=1}^{m} g_{i} D_{i}
$$

where $g_{i}=g_{i}\left(a_{1}, \ldots, a_{k_{1}}\right), g_{i} \in F\left[t_{1}, \ldots, t_{k_{1}}\right]$ and $\operatorname{deg} g_{i} \leqslant 1$, such that

$$
\begin{equation*}
\left[D_{i}, T-\bar{T}\right]=0, \quad i=1, \ldots, k_{1} \tag{2}
\end{equation*}
$$

Without loss of generality one can assume that $\left[D_{i}, T\right]=0, i=1, \ldots, k_{1}$. The element T can be written in the form

$$
T=s_{1} D_{1}+\cdots+s_{m} D_{m}, \quad s_{i} \in R, \quad i=1, \ldots, m
$$

Then the matrix $B=\left(D_{i}\left(s_{j}\right)\right)$ is of the form

$$
B=\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\cdot & \cdots & \cdot \\
0 & \cdots & 0 \\
D_{k_{1}+1}\left(s_{1}\right) & \ldots & D_{k_{1}+1}\left(s_{m}\right) \\
\cdot & & \\
\cdot & & \\
D_{m}\left(s_{1}\right) & \cdots & D_{m}\left(s_{m}\right)
\end{array}\right)
$$

because $\left[D_{i}, T\right]=\sum_{j=1}^{m} D_{i}\left(s_{j}\right) D_{j}=0, i=1, \ldots, k_{1}$, and therefore

$$
D_{i}\left(s_{j}\right)=0, \quad i=1, \ldots, k_{1}, \quad j=1, \ldots, m
$$

The matrix B is nonzero because the derivation $\operatorname{ad} T$ is a nonzero linear operator on the vector F-space $F I$. Using Lemma 3 one can find $D_{k_{1}+1}^{\prime}, \ldots, D_{m}^{\prime} \in F I$ and $a_{k_{1}+1}, \ldots, a_{k_{1}+k_{2}} \in R$ such that

$$
D_{i}^{\prime}\left(a_{j}\right)=\delta_{i j}, \quad j=k_{1}+1, \ldots, k_{1}+k_{2}, \quad i=1, \ldots, m
$$

One can easy to see that $D_{k_{1}+1}^{\prime}, \ldots, D_{k_{1}+k_{2}}^{\prime}$ are linear combinations of the derivations $D_{k_{1}}, \ldots, D_{m}$. Returning to the old notation we can write $D_{k_{1}+1}=D_{k_{1}+1}^{\prime}, \ldots, D_{m}=D_{m}^{\prime}$. Then $D_{i}\left(a_{j}\right)=\delta_{i j}, i=1, \ldots, m, j=$ $1, \ldots, k_{1}+k_{2}$. By Lemma 3 the element T can be written in the form

$$
\begin{equation*}
T=\sum_{i=1}^{m} f_{i}\left(a_{1}, \ldots, a_{k_{1}+k_{2}}\right) D_{i} \tag{3}
\end{equation*}
$$

where $f_{i} \in F\left[t_{1}, \ldots, t_{k_{1}+k_{2}}\right], \operatorname{deg} f_{i} \leqslant 1$. If every element of $F L$ is of the form (3), then all is done. If not, then we can repeat the above considerations and build elements

$$
D_{k_{1}+k_{2}+1}, \ldots, D_{k_{1}+k_{2}+k_{3}} \in F L, \quad a_{k_{1}+k_{2}+1}, \ldots, a_{k_{1}+k_{2}+k_{3}} \in R
$$

with properties $D_{i}\left(a_{j}\right)=\delta_{i j}, i=1, \ldots, m, j=1, \ldots, k_{1}+k_{2}+k_{3}$. This process eventually stops and we get the needed basis D_{1}, \ldots, D_{m} of the ideal $F L$, some elements $a_{1}, \ldots, a_{k} \in R$ with the property $D_{i}\left(a_{j}\right)=\delta_{i j}$ and possibility to write any element of $F L$ in the form

$$
D=\sum_{i=1}^{m} f_{i}\left(a_{1}, \ldots, a_{k}\right) D_{i}
$$

where $f_{i} \in F\left[t_{1}, \ldots, t_{k}\right]$, $\operatorname{deg} f_{i} \leqslant 1$. The proof is complete.
Corollary 1. Let L be a subalgebra of rank m over R of the Lie algebra $W_{n}(\mathbb{K})$. If L contains an abelian ideal I of the same rank m over R, then $F L$ is isomorphic to a subalgebra of the general affine Lie algebra $\operatorname{aff}_{m}(F)$.

Proof. By Theorem 1 every element $D \in F L$ can be written in the form

$$
D=f_{1}\left(a_{1}, \ldots, a_{k}\right) D_{1}+\cdots+f_{m}\left(a_{1}, \ldots, a_{k}\right) D_{m}, \quad f_{i} \in F\left[t_{1}, \ldots, t_{k}\right]
$$

with $\operatorname{deg} f_{i} \leqslant 1, D_{i}\left(a_{j}\right)=\delta_{i j}, i=1, \ldots, m, j=1, \ldots, k$. The linear polynomial f_{i} can be written in the form $f_{i}=\bar{f}_{i}+c_{i}$, where $c_{i} \in F, \bar{f}_{i}$ is
a homogeneous polynomial of degree 1, i.e. a linear form $\bar{f}_{i}=\sum_{j=1}^{k} a_{i j} x_{j}$. One can establish a correspondence φ between the Lie algebra $F L$ and a subalgebra of the Lie algebra $\mathrm{gl}_{\mathrm{m}}(F)$ by the rule: if $D \in F L$ is of the form

$$
D=\sum_{i=1}^{m} f_{i} D_{i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{k} a_{i j} x_{j}+c_{i}\right) D_{i}
$$

then $\varphi(D)=A+\bar{c}$, where

$$
A=\left(a_{i j}\right) \in \operatorname{gl}_{\mathrm{m}}(F) \quad \text { and } \quad \bar{c}=\left(c_{1}, \ldots, c_{m}\right) \in V_{m}
$$

One can easily verify that this correspondence is an injective homomorphism from the Lie algebra $F L$ into the general affine Lie algebra $\operatorname{aff}_{m}(F)$. Therefore $F L$ is isomorphic to a subalgebra of the general affine Lie algebra $\operatorname{aff}_{m}(F)$.

References

[1] Ie.Chapovskyi, D.Efimov, A.Petravchuk, Solvable Lie algebras of derivations of polynomial rings in three variables, Applied problems of Mechanics and Mathematics, Lviv, issue. 16. (2018), 7-13.
[2] A. González-López, N. Kamran and P.J. Olver, Lie algebras of differential operators in two complex variavles, Amer. J. Math., v. 114 (1992), 1163-1185.
[3] Ie. O. Makedonskyi and A.P. Petravchuk, On nilpotent and solvable Lie algebras of derivations, J. Algebra, 401 (2014), 245-257.
[4] I.S Klimenko, S.V. Lysenko, A.P. Petravchuk, Lie algebras of derivations with abelian ideals of maximal rank, Uzhgorod University, 31, issue 2 (2017), 83-90 (in Ukrainian).
[5] A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun (1994).
[6] A. Nowicki, Commutative basis of derivations in polynomial and power series rings, J. Pure Appl. Algebra, 40 (1986), 279-283.
[7] S. Lie, Theorie der Transformationsgruppen, Vol. 3, Leipzig, 1893.

Contact information

I. S. Klymenko, Taras Shevchenko National University of Kyiv,
S. V. Lysenko,
A. P. Petravchuk

64, Volodymyrska street, 01033 Kyiv, Ukraine E-Mail(s): ihorKlim93@gmail.com, svetlana.lysenko.1988@gmail.com, apetrav@gmail.com

[^0]: 2010 MSC: Primary 17B66; Secondary 17B05, 13N15.
 Key words and phrases: Lie algebra, vector field, polynomial ring, abelian ideal, derivation.

