Algebra and Discrete Mathematics Number 3. (2005). pp. 46 – 55 © Journal "Algebra and Discrete Mathematics"

RESEARCH ARTICLE

Criterions of supersolubility of some finite factorizable groups

Helena V. Legchekova

Communicated by L. A. Shemetkov

ABSTRACT. Let A, B be subgroups of a group G and $\emptyset \neq X \subseteq G$. A subgroup A is said to be X-permutable with B if for some $x \in X$ we have $AB^x = B^xA$ [1]. We obtain some new criterions for supersolubility of a finite group G = AB, where A and B are supersoluble groups. In particular, we prove that a finite group G = AB is supersoluble provided A, B are supersolube subgroups of G such that every primary cyclic subgroup of A X-permutes with every Sylow subgroup of B and if in return every primary cyclic subgroup of A where X = F(G) is the Fitting subgroup of G.

Introduction

Throughout this paper, all groups are finite. By well-known Fitting's theorem [2, III, 4.1] the produkt of any two normal nilpotent subgroups is nilpotent as well. It is known however, that supersoluble groups do not have such a property [3], [4]. It was observed by R.Baer [5] that the product G = AB of two normal supersoluble subgroups A and B is supersoluble if G' is nilpotent. Another important results were obtained by M.Asaad and A. Shaalan in [4], where it was proved that a product G = AB of supersoluble groups A and B is supersoluble if every subgroup of A is permutable with every subgroup of B. Later on the observations from [4] were extended in various papers (see for example [6], [7], [8], [9], [10], [11]). In this paper we prove some new results in this direction.

²⁰⁰⁰ Mathematics Subject Classification: 20D20.

Key words and phrases: *finite group, supersoluble group, permutable subgroups, product of subgroups.*

Recall that a subgroup A of a group G is permutable with a subgroup B if AB = BA. In many cases we meet the situation when $AB \neq BA$ but $AB^x = B^xA$ for some $x \in G$. For example, when G is soluble and H and T are Sylow subgroups of G, then $HT^x = T^xH$, for some $x \in G$ ([2, VI, 3.1]). Another example is that if G = HT and H_p , T_p are Sylow p-subgroups in H and T respectively, then $H_pT_p \neq T_pH_p$ in general but there exists an element $x \in G$ such that $H_pT_p^x = T_p^xH_p$. In the analizing of the situations of this kind it is convenient to use the following natural concepts which were introduced in [1].

Definition. Let A, B be subgroups of a group G and $\emptyset \neq X \subseteq G$. Then:

(1) A is X-permutable with B if there exists some $x \in X$ such that $AB^x = B^x A$;

(2) A is X-permutable in G if A is X-permutable with all subgroups of G;

(3) A is hereditarily X-permutable with B if $AB^x = B^x A$, for some $x \in X \cap \langle A, B \rangle$.

1. Preliminaries

We first cite here some properties of factorizations of groups. The following two lemmas are well known.

Lemma 1.1. Let A, B be proper subgroups of a group G with G = AB. Then $G = AB^x$ and $G \neq AA^x$ for all $x \in G$.

Lemma 1.2. If G = AB and p be a prime, then there exist some Sylow psubgroups A_p , B_p and G_p in A, B and G respectively such that $G_p = A_p B_p$.

We shall often use the following fact which at first was proved in [15].

Lemma 1.3. Let G = AB be the product of its subgroups A, B. If L is a normal subgroup of A and $L \leq B$, then $L \leq B_G$.

Lemma 1.4. [14, 1.7.11]. If H/K is a chief factor of a group G and if p is a prime divisor of |H/K|, then $O_p(G/C_G(H/K)) = 1$.

We shall also need the following well known facts about supersoluble and soluble groups.

Lemma 1.5. Let G be a group. Then the following statements hold:

(i) if G is supersoluble, then $G' \subseteq F(G)$ and G is p-closed for the largest prime divisor p of |G|;

(ii) if $L \leq G$ and $G/\Phi(L)$ is supersoluble, then G is supersoluble;

(iii) G is supersoluble if and only if |G : M| is a prime for every maximal subgroup M of G.

Lemma 1.6. [14, 2.4.3]. Let M_1, M_2 be maximal subgroups of a soluble group G such that $(M_1)_G = (M_2)_G$. Then M_1 and M_2 are conjugate.

Lemma 1.7. [15]. Let A, B be subgroups of a group G. Assume that A permutes with B^x for every $x \in G$. If $AB \neq G$, then G is not simple.

Now we cite some properties of X-permutable subgroups.

Lemma 1.8. [1]. Let A, B, X be subgroups of G and $K \leq G$. Then the following statements hold:

(1) If A is (hereditarily) X-permutable with B, then B is (hereditarily) X-permutable with A.

(2) If A is (hereditarily) X-permutable with B, then A^x is (hereditarily) X^x -permutable with B^x for all $x \in G$.

(3) If $K \leq A$, then A/K is (hereditarily) XK/K-permutable with BK/K in G/K if and only if A is (hereditarily) X-permutable with B in G.

(4) If $A, B \leq M \leq G$ and A is hereditarily X-permutable with B, then A is hereditarily $(X \cap M)$ -permutable with B.

Lemma 1.9. Let p be a prime, $G = Z_p B$ where $|Z_p| = p \nmid |B|$, B is a soluble group and Z_p X-permutes with every Sylow subgroup of B where X = F(G) is the Fitting subgroup of G. Then G is a soluble group.

Proof. Assume that this lemma is false and let G be a counterexample with minimal order. Then:

(1) G is not simple.

Assume that G is a simple group. Then X = 1. Let B_q be a Sylow q-subgroup of B. Then by hypotheses, $Z_pB_q = B_qZ_p$. Besides, because for every $x \in G = Z_pB$ we have

$$Z_p B_q^x = Z_p B_q^{ba} = Z_p (B_q^b)^a = Z_p B_q^b = B_q^x Z_p$$

where $b \in B$ and $a \in Z_p$. Then by Lemma 1.7, G is not simple.

(2) G/N is soluble for every normal subgroup N of G.

Indeed, let N be a normal subgroup of G. If $Z_p \subseteq N$, then $G/N = NB/N \simeq B/N \cap B$ is a soluble group.

Let $Z_p \not\subseteq N$. Then $G/N = (Z_p N/N)(BN/N)$ is the product of the subgroup $Z_p N/N$ with order p and the soluble subgroup BN/B. Let D/N be a Sylow q-subgroup of BN/N. Then $D = B_q N$ for some Sylow q-subgroup B_q of B, and so by hypotheses,

$$(Z_p N/N)(D/N)^{xN} = (D/N)^{xN}(Z_p N/N)$$

for some $xN \in XN/N \leq F(G/N)$. Thus the hypotheses are true for G/N. Since |G/N| < |G| and by the choice of G, the subgroup G/N is a soluble group.

(3) Final contradiction.

If $X \neq 1$ then in view of (2), G/X is soluble and so G is a soluble group, a contradiction. Hence X = 1. Let N be a minimal normal subgroup of G. Then in view of (1), $N \neq G$. First assume that $p \nmid |N|$. Then evidently $N \subseteq B$. Since by hypotheses, B is a soluble group, Nis soluble and so in view of (2), G is a soluble group, a contradiction. Hence $p \mid |N|$. Since B is a Hall p'-subgroup of G, so $B \cap N$ is a Hall p'subgroup of N. It is clear that $Z_p \subseteq N$, and so by Dedekind Law, we have $N = N \cap Z_p B = Z_p(N \cap B)$. Let Q be a Sylow q-subgroup of $N \cap B$, B_q be a Sylow q-subgroup of B such that $B_q \cap N = Q$. Then by hypotheses, $B_q Z_p = Z_p B_q$, and hence $N \cap B_q Z_p = Z_p(N \cap B_q) = Z_p Q = Q Z_p$. Thus the hypotheses are true for N and N is a soluble group. It follows that G is soluble, contrary to the choice of G.

2. Main results

N.M. Kurnosenko has proved in [9] that the product G = AB of two supersoluble subgroups A and B having coprime orders is supersoluble if A and every cyclic subgroup of A permutes with every Sylow subgroup of B and if in return B and every cyclic subgroup of B permutes with every Sylow subgroup of A.

The following theorem is a local analog of this result in the case when G is soluble.

Theorem 2.1. Let G be a soluble group and G = AB be a product of p-supersoluble subgroups A, B having coprime orders. Assume that p divides |A| and

(1) if p > 2 then A and every its subgroup with prime order p permutes with every Sylow subgroup of B;

(2) if p = 2 then A and every its subgroup with order 2 or 4 permutes with every Sylow subgroup of B.

Then G is a p-supersoluble group.

Proof. Assume that the result is false and let G be a counterexample with minimal order. Let \mathfrak{F} be the class of all p-supersoluble group.

Let M be a \mathfrak{F} -abnormal maximal in G subgroup. Then $|G:M| = p^{\alpha}$ for some $\alpha \in \mathbb{N}/\{1\}$ or $|G:M| = q^{\beta}$ for some $\beta \in \mathbb{N}$ and $q \in \mathbb{P}, q \neq p$. First assume that $|G:M| = p^{\alpha}$. Since p divides |A| and since by Hall's theorem [13, 1, 3.3], G has an element x such that $B \subseteq M^x$, then without loss of generality we may assume that $B \subseteq M$. Now we shall show that for M the hyposeses are true. Indeed, by using the Dedekind Law, we have $M = M \cap AB = (M \cap A)B$ where $M \cap A$ and B are p-supersoluble subgroups of M having coprime orders. If $M \cap A$ is a p'-group then Mis a p'-group and so M is a p-supersoluble group. Now suppose that $p \mid M \cap A$. Let T be a subgroup of $M \cap A$ with prime order p (or 4 in the case when p = 2). And let B_q be a Sylow q-subgroup of B. By hypotheses $B_qT = TB_q$. Since $AB_q = B_qA$, so $AB_q \cap M = (M \cap A)B_q =$ $B_q(M \cap A)$. So the hypotheses are true for M and its subgroups $M \cap A$ and B. Hence by the choice of G, the subgroup M is p-supersoluble. Now let $|G:M| = q^\beta$ where $q \neq p$. Same as above, we can see that Mis p-supersoluble. Thus every \mathfrak{F} -abnormal maximal subgroup of G is a p-supersoluble group.

Since G is soluble, so by [12, VI, 24.2] G has a normal p-subgroup P satisfying the following conditions:

(i) G/P is p-supersoluble and P is the smallest normal subgroup of G with p-supersoluble quotient;

(ii) if p > 2, then the exponent of P is p; if p = 2, then the exponent of P is 2 or 4;

(iii) $P/\Phi(P)$ is a chief factor of G.

It is clear that $P \subseteq A$. Let $\Phi = \Phi(P)$ and let q be a prime such that $q \nmid |A|$, G_q be a Sylow q-subgroup of G. Denote by $G_{q'}$ some Hall q'-subgroup of G such that $A \leq G_{q'}$. Then $P \subseteq G_{q'}$. Using the same argument as above, we see that $G_{q'}$ is p-supersoluble. Hence we see that $G_{q'}/\Phi$ has a normal subgroup H/Φ such that $|H/\Phi| = p$ and so $H = \langle a \rangle \Phi$ where $\langle a \rangle \subseteq P$. It is clear that $|\langle a \rangle | = p$ or $|\langle a \rangle | = 4$. For some $x \in G$, we have $G_q^x \leq B$. Then by hypotheses, $\langle a \rangle G_q^x = G_q^x \langle a \rangle$. Since $\langle a \rangle$ is subnormal in G and $(|\langle a \rangle | , q) = 1$, so $G_q^x \subseteq N_G(\langle a \rangle)$, and therefore $H/\Phi \subseteq G/\Phi$. Then we have $P/\Phi = H/\Phi$ is a cyclic group. It is clear that $G/P \simeq (G/\Phi)/(P/\Phi)$ is p-supersoluble and so G/Φ is a p-supersoluble group, a contradiction.

By extending the results [9] we prove the following two theorems.

Theorem 2.2. Let G = AB be a product of supersoluble subgroups A, B having coprime orders and X = F(G) the Fitting subgroup of G. Assume that A and every its subgroup with prime order or with order dividing 4 is hereditarily X-permutable with every subgroup of B and in return B and every its subgroup with prime order or with order dividing 4 is hereditarily X-permutable with every subgroup of A. Then G is a supersoluble group.

Proof. Assume that this theorem is false and let G be a counterexample with minimal order. Then:

(1) Some maximal subgroup of G is not supersoluble.

Assume that every maximal subgroup of G is supersoluble. Then G is soluble [15] and by [13, 7, 6.18] it has a normal Sylow p-subgroup P satisfying the following conditions:

(i) G/P is supersoluble and P is the smallest normal subgroup of G with supersoluble quotient;

(ii) if p > 2, then the exponent of P is p; if p = 2, then the exponent of P is 2 or 4;

(iii) $P/\Phi(P)$ is a chief factor of G.

Using the same arguments in the proof of Theorem 2.1, we can prove (1).

(2) G is not soluble.

Assume that G is soluble and let M be a maximal in G subgroup. Then $|G:M| = p^{\alpha}$ for some prime p. Without loss of generality one can suppose that $p \mid |B|$. By Hall's theorem [13, 1, 3.3], G has an element xsuch that $A \subseteq M_1 = M^x$. Now we shall prove that M_1 is supersoluble. Indeed, by using the Dedekind Law, we have $M_1 = M_1 \cap AB = A(M_1 \cap B)$ where A and $M_1 \cap B$ are supersoluble subgroups of M_1 having coprime orders. Let T be a subgroup of A with prime order or with order dividing 4. And let B_1 be a subgroup of $M_1 \cap B$. Then by hypotheses $TB_1^x = B_1^x T$ for some $x \in X \cap \langle T, B_1 \rangle \leq M_1$. Since $X \cap M_1 \leq F(M_1)$, so $x \in$ $M_1 \cap \langle T, B_1 \rangle$. So the hypotheses are true for M_1 and its subgroups $A \cap M_1$ and B. Since $|M_1| < |G|$ and by the choice of G, the subgroup M_1 is supersoluble, and so M is supersoluble too. Thus every maximal subgroup of G is supersoluble, contrary (1). Thus we have conclude that (2) is true.

(3) G has a normal Sylow subgroup.

Let p be the largest prime divisor of |G|. Without loss of generality we may assume that $p \mid |A|$. Let A_p be a Sylow p-subgroup of A. Since by hypotheses A is supersoluble, by Lemma 1.5 we have $A_p \leq A$. Now let B_q be a Sylow q-subgroup of B where $q \neq p$. By hypothesis, D = $AB_q^x = B_q^x A$ for some $x \in X \cap \langle A, B_q \rangle$. Assume that D = G. By Lemma 1.1 $G = AB_q$ and so $B_q = B$. Then by hypotheses $A_p^x B_q = B_q A_p^x$ for some $x \in X \cap \langle A_p, B_q \rangle$. If $A_p^x B_q = G$, then by Burnside's $p^a q^b$ theorem G is soluble, contrary (2). Hence $A_p^x B_q \neq G$. It is evident that the hypotheses are true for the group $A_p^x B_q$, and so by the choice of G, $A_p^x B_q$ is supersoluble. That implies $A_p^x \leq A_p^x B_q$. Thus $A_p \leq G$.

(4) Final contradiction.

Let Q be a normal Sylow subgroups of G. Then $|G:Q| = q^{\alpha}$ for

some $\alpha \in \mathbb{N}$. Without loss of generality we may assume that $q \mid |A|$. Now we shall show that for G/Q = (A/Q)(BQ/Q) the hypotheses are true. Indeed, A/Q and BQ/Q are supersoluble subgroups of G/Q having coprime orders. Assume that $p \mid |A/Q|$. Let H/Q be a subgroup of A/Qwith prime order (or with order dividing 4 in the case when p = 2). Then by Schur-Zassenhaus's theorem [14, 1.7.9] G has a subgroup T such that H = TQ and |T| = |H/Q|. Let B_1/Q be a subgroup of BQ/Q. Then by using the Dedekind Law, we have $B_1 = Q(B_1 \cap B)$. By hypotheses $T(B_1 \cap B)^x = (B_1 \cap B)^x T$ for some $x \in X$ and so $(H/Q)(B_1/Q)^{xQ} =$ $(TQ/Q)((B_1 \cap B)^x Q/Q) = T(B_1 \cap B)^x Q/Q = (B_1 \cap B)^x T/Q = ((B_1 \cap B)^x Q/Q)(TQ/Q) = (B_1/Q)^{xQ}(H/Q)$. Since $Q \leq X$, so $xQ \in X/Q \leq$ F(G/Q). Hence the hypotheses are true for G/Q, and so G/Q is soluble. Now we obtain that G is a soluble group. This contradiction completes the proof.

Theorem 2.3. Let G = AB be a product of supersoluble subgroups A, B and X = F(G) the Fitting subgroup of G. If every primary cyclic subgroup of A X-permutes with every Sylow subgroup of B and if in return every primary cyclic subgroup of B X-permutes with every Sylow subgroup of A, then G is a supersoluble group.

Proof. Assume that this theorem is false and let G be a counterexample with minimal order. Then:

(1) G/N is supersoluble for every non-identity normal subgroup N of G.

Let N be a non-identity normal subgroup of G. First of all we note that G/N = (AN/N)(BN/N) is the product of the supersoluble subgroups $AN/N \simeq A/N \cap A$ and $BN/N \simeq B/N \cap B$. Now let T/N be a cyclyc primary subgroup of AN/N. It is clear that for some cyclic primary subgroup < b > of T we have T = < b > N. Since $T \le AN$, b = an for some element $a \in A$ having primary order and for some $n \in N$, and so < a > N = < b > N. Let D/N be a Sylow qsubgroup of BN/N. Hence $D/N = B_qN/N$ for some Sylow q-subgroup B_q of B. Since by hypotheses, $< a > B_q^x = B_q^x < a >$ for some $x \in X$ and so we have $(D/N)^{xN}(T/N) = (D^xN/N)(< a > N/N) =$ $(B_q^xN/N)(< a > N/N) = B_q^x < a > N/N = < a > B_q^xN/N = (< a >$ $N/N)(B_q^xN/N) = (< a > N/N)(D^xN/N) = (T/N)(D/N)^{xN}$. It is clear that $xN \in XN/N \le F(G/N)$. Thus the hypotheses are true for G/N. But |G/N| < |G|, and so by the choice of G we have (1).

(2) G is a soluble group.

Assume that G is not soluble.

If $X \neq 1$ then by (1), G/X is supersoluble and so G is a soluble group, a contradiction.

Hence X = 1. Let p be the largest prime divisor of |G|. Without loss of generality we may assume that $p \mid |A|$. Let A_p be a Sylow psubgroup of A. Then since by hypotheses A is supersoluble, from Lemma 1.5 we have $A_p \leq A$. Thus A has a minimal normal subgroup, say H, such that |H| = p. If $H \leq B$, then by Lemma 1.3, $H^G \leq B$ and so a minimal normal subgroup of G contained in H^G is abelian since by hypotheses B is supersoluble as well as the subgroup A. From (1) it follows that G is soluble, a contradiction. Let $H \not\subseteq B$ and let B = $B_1 \ldots B_t$ where B_1, \ldots, B_t are Sylow subgroups of B. Then since by hypotheses H permutes with all $B_1, \ldots, B_t, D = HB = BH$. Assume $D \neq G$. Since the hypotheses are true for D and |D| < |G|, so we obtain that D is supersoluble. But G = AD, and so by Lemma 1.3 and in view of (1), we again have a contradiction. Now suppose that D = G. In view of Lemma 1.9 we may assume that $p \mid B \mid$. Let B_p be a Sylow *p*-subgroup of B. Then $HB_p = B_pH$, and $G = HB = (HB_p)B$. Hence because $B_p \leq B, B_p^G \subseteq HB_p$, and so by (1), G is a soluble group, a contradiction. That implies (2).

(3) G has the only minimal normal subgroup, say N, and G = [N]Mwhere $N = C_G(N) = O_p(G)$ for some prime p, M is a supersoluble maximal subgroup of G and $O_p(M) = 1$.

Since the class of all supersoluble groups is closed under subdirect products, then in view of (2), G has the only minimal normal subgroup, say N. In view of (1) and by Lemma 1.5, we also have $L \nsubseteq \Phi(G)$. Let Mbe a maximal subgroup of G not containing N and $C = C_G(N)$. Then by the Dedekind Law, we have $C = C \cap NM = N(C \cap M)$. Since N is abelian, $C \cap M \trianglelefteq G$ and so $C \cap M = 1$. This shows that $N = O_p(G) = C_G(N)$ and $M \simeq G/N$ is a supersoluble group with $O_p(M) = 1$ by Lemma 1.4. (4) p is the largest prime divisor of |G|.

Let T_1 and T_2 be maximal subgroups of G such that $A \leq T_1, B \leq T_2$. Since $G = AB = T_1T_2$, then by Lemma 1.1, $T_1 \neq T_2^x$ for all $x \in G$. Hence by Lemma 1.6, $(T_1)_G \neq (T_2)_G$, and so we have either $N \subseteq T_1$ or $N \subseteq T_2$. Let $N \subseteq T_1$. Let q be the largest prime divisor of $|T_1|$. Then a Sylow q-subgroup of T_1 is normal in T_1 , and hence it contained in $C_G(N) = N$. Thus p is the largest prime divisor of $|T_1|$. If T_1 is not a Hall subgroup of G, we have (4). Let T_1 be a Hall subgroup of G and assume that $p \neq q$, where q is the largest prime divisor of |G|. Then $|G : T_1| = q^{\alpha}$ for some $\alpha \in \mathbb{N}$. Since $N \subseteq T_1$, so by (1), $|G : T_1| = q$ is the order of a Sylow q-subgroup of G. It is clear that $q \mid |B|$. Let B_q be a Sylow q-subgroup of B. By hypotheses, $AB_q^x = B_q^x A$ for some $x \in X$ and by Lemma 1.5, $B_q^x \leq B^x$. Hence by Lemma 1.3, $N \leq AB_q^x$. So $N \subseteq A_p$, and therefore A has a normal subgroup Z with order p such that $Z \leq N$ and $ZB^y = B^y Z$ for some $y \in X$. By Lemma 1.3, $N \leq ZB^y$, and so by (2), $B^y_q \leq C_G(N) = N$. This contradiction completes the proof of (4).

(5) N is a Sylow p-subgroup of G.

Assume that the assertion is not true. Then, we have $p \mid |G : N|$. This means that $p \mid |M|$, and so by (4) and by Lemma 1.5, we see that $O_p(M) \neq 1$. This contradicts (3). Hence, N is a Sylow *p*-subgroup of G. (6) Final contradiction.

Since G = AB and N is a Sylow p-subgroup of G, we have either $N \cap A \neq 1$ or $N \cap B \neq 1$. Let $N \cap A = A_p \neq 1$, Z_p be a minimal normal in A subgroup contained in $N \cap A$.

By hypotheses, $D = Z_p B_q^x = B_q^x Z_p$ for some $x \in X$ where q is a prime, $q \neq p$ and B_q is a Hall q-subgroup of B. Then $Z_p = N \cap Z_p B_q^x \leq Z_p(N \cap D) \leq D$. Hence $Z_p \leq NAB_q^x$ and so $Z_p \leq G$. Therefore $Z_p = N$, and so G is a supersoluble group, contrary to the choice of G.

References

- Skiba A.N., *H-Permutable Subgroups*, Proceedings of the F.Scorina Gomel State University, N.4, 2003, pp.90-92.
- [2] Huppert B., Endliche Gruppen I, Springer-Verlag. Heidelberg/New York, 1967
- [3] Huppert B., Monomiale Derstellungen endicher Gruppen, Nagoya Math. J., 6, 1953, pp.93-94.
- [4] Asaad M., Shaalan A., On the supersolvability of finite groups, Arch. Math., 53, 1989, pp.318-226.
- [5] Baer R., Classes of finite groups and their properties, Illinois J. Math., 1, 1957, pp.115-187.
- [6] Ballester-Bolinches A., Perez-Ramos M.D. and Pedraza-Aguilera M.C., Mutually permutable products of finite groups, J. Algebra, 213, 1999, pp.369-377.
- [7] Carocca A., p-supersolubility of factorized finite groups, Hokkaido Math. J., 21, 1992, pp.395-403.
- [8] Maier Rudolf, A completeness Property of certain formations, Bull. London Math. Soc., 24, 1992, pp.540-544.
- Kurnosenko N.M., On factorisations of finite groups by supersoluble and nilpoten subgroups, Problems in algebra, 12, 1998, pp.113-122.
- [10] Guo W., Shum K.P. and Skiba A.N., Conditionally Permutable Subgroups and Supersolubility of Finite Groups, SEAMS Bull Math., 29(2), 2005, pp.792-810.
- [11] Guo W., Shum K.P. and Skiba A.N., Criterions of Supersolubility for Products of Supersoluble Groups (to appear in Publ. Math. Debrecen, 2005).
- [12] Shemetkov L.A., Formation of finite groups, M., Nauka, 1978.
- [13] Doerk K. and Hawkes T., *Finite soluble grousp*, Walter de gruyter, Berlin/New York, 1992.

- [14] Wenbin Guo, *The Theory of Classes of Groups*, Science Press-Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.
- [15] Čunihin S.A., Simplicité de groupe fini et les ordres de ses classes d'éléments conjugués, Comptes Rendus Acad. Sci. Paris, 191, 1930, pp.397-399.
- [16] Doerk K., Minimal nicht überauflösbare endliche Gruppen, Math. Z., 91, 1966, pp.198-205.

CONTACT INFORMATION

H. V. Legchekova
Gomel State University of F.Skorina, Belarus, 246019, Gomel, Sovetskaya Str., 103
E-Mail: E.Legchekova@tut.by

Received by the editors: 15.08.2005 and final form in 10.09.2005.