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Abstract. The extensions of hypersubstitutions are map-

pings on the set of all terms. In the present paper we characterize

all hypersubstitutions which provide bijections on the set of all

terms. The set of all such hypersubstitutions forms a monoid.

On the other hand, one can modify each hypersubstitution to

any mapping on the set of terms. For this we can consider map-

pings ρ from the set of all hypersubstitutions into the set of all

mappings on the set of all terms. If for each hypersubstitution σ
the application of ρ(σ) to any identity in a given variety V is again

an identity in V , so that variety is called ρ-solid. The concept of

a ρ-solid variety generalizes the concept of a solid variety. In the

present paper, we determine all ρ-solid varieties of semigroups for

particular mappings ρ.

1. Basic Definitions and Notations

We fix a type τ = (ni)i∈I , ni > 0 for all i ∈ I, and a set of operation
symbols Ω := {fi | i ∈ I} where fi is ni-ary. Let Wτ (X) be the set of
all terms of type τ over some fixed alphabet X = {x1, x2, . . .}. Terms in
Wτ (Xn) with Xn = {x1, . . . , xn}, n ≥ 1, are called n-ary. For natural
numbers m, n ≥ 1 we define a mapping Sn

m : Wτ (Xn) × Wτ (Xm)n →
Wτ (Xm) in the following way: For (t1, . . . , tn) ∈ Wτ (Xm)n we put:
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(i) Sn
m(xi, t1, . . . , tn) := ti for 1 ≤ i ≤ n;

(ii) Sn
m(fi(s1, . . . , sni

), t1, . . . , tn) := fi(S
n
m(s1, t1, . . . , tn), . . . , Sn

m(sni
,

t1, . . . , tn)) for i ∈ I, s1, . . . , sni
∈ Wτ (Xn) where Sn

m(s1, t1, . . . , tn),
. . . , Sn

m(sni
, t1, . . . , tn) will be assumed to be already defined.

If it is obvious what m is, we write Sn. For t ∈ Wτ (X) we define the
depth of t in the following inductive way:
(i) depth(t) := 0 for t ∈ X;
(ii) depth(t) := max{depth(t1), . . . , depth(tni

)} + 1 for t = fi(t1, . . . ,
tni

)with i ∈ I, t1, . . . , tni
∈ Wτ (X) where depth(t1), . . . , depth(tni

)
will be assumed to be already defined.

By c(t) we denote the length of a term t (i.e. the number of the
variables occurring in t), var(t) denotes the set of all variables occurring
in t and cv(t) means the number of elements in the set var(t). Instead
of x1, x2, x3, . . . we write also x, y, z, . . ..

The concept of a hypersubstitution was introduced in [2].

Definition 1. A mapping σ : Ω → Wτ (X) which assigns to every ni-ary
operation symbol fi, i ∈ I, an ni-ary term is called a hypersubstitution
of type τ (shortly hypersubstitution). The set of all hypersubstitutions of
type τ will be denoted by Hyp(τ).

To each hypersubstitution σ there belongs a mapping from the set
of all terms of the form fi(x1, . . . , xni

) to the terms σ(fi). It follows that
every hypersubstitution of type τ then induces a mapping σ̂ : Wτ (X) →
Wτ (X) as follows:
(i) σ̂[w] := w for w ∈ X;
(ii) σ̂[fi(t1, . . . , tni

)] := Sn(σ(fi), σ̂[t1], . . . , σ̂[tni
]) for i ∈ I, t1, . . . , tni

∈ Wτ (X) where σ̂[t1], . . . , σ̂[tni
] will be assumed to be already

defined.
By σ1 ◦h σ2 := σ̂1 ◦ σ2 is defined an associative operation on Hyp(τ)

where ◦ denotes the usual composition of mappings. By ε we denote the
hypersubstitution with ε(fi) = fi(x1, . . . , xni

) for i ∈ I, where ε deals
as identity element. Then (Hyp(τ); ◦h, ε) forms a monoid, denoted by
Hyp(τ).

2. Bijections on Wτ (X)

By Bij(τ) we denote the set of all σ ∈ Hyp(τ) such that σ̂ : Wτ (X) →
Wτ (X) is a bijection on Wτ (X). Such hypersubstitutions have a high
importance in computer science.

The product of two bijections is again a bijection. Further, for two
hypersubstitutions σ1 and σ2 we have

(σ1 ◦h σ2)̂ = σ̂1 ◦ σ̂2
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(see [3]). So we have the following result.

Proposition 1. (Bij(τ); ◦h, ε) forms a submonoid of Hyp(τ).

For the characterization of Bij(τ) we need the following notations:

(i) B denotes the set of all bijections on Ω preserving the arity.

(ii) Let Sn be the set of all permutations of the set {1, . . . , n} for
1 ≤ n ∈ N.

(iii) A :=
⋃

1≤n∈N

Sn.

(iv) P := {p ∈ AI | p(i) ∈ Sni
for i ∈ I}.

The following theorem characterizes Bij(τ) for any type τ .

Theorem 1. Let τ = (ni)i∈I , ni > 0 for all i ∈ I, be any type. For each
σ ∈ Hyp(τ) the following statements are equivalent:

(i) σ ∈ Bij(τ).
(ii) There are h ∈ B and p ∈ P such that

σ(fi) = h(fi)(xp(i)(1), . . . , xp(i)(ni)) for all i ∈ I.

Proof. (ii) ⇒ (i) : We show by induction that σ̂ is injective and surjective.

Injectivity: Let s, t ∈ Wτ (X) with σ̂[s] = σ̂[t].

Suppose that the depth(s) = 0. Then depth(t) = 0 and s, t are vari-
ables with s = σ̂[s] = σ̂[t] = t.

Suppose that from σ̂[s‘] = σ̂[t‘] there follows s‘ = t‘ for any s‘, t‘ ∈
Wτ (X) with depth(s‘) ≤ n.

Let depth(s) = n + 1. Then depth(t) ≥ 1 and there are i, j ∈ I with
s = fi(s1, . . . , sni

) and t = fj(t1, . . . , tnj
). Now we have

σ̂[s] = Sni(h(fi)(xp(i)(1), . . . , xp(i)(ni)), σ̂[s1], . . . , σ̂[sni
])

and

σ̂[t] = Snj (h(fj)(xp(j)(1), . . . , xp(j)(nj)), σ̂[t1], . . . , σ̂[tnj
]). From σ̂[s] =

σ̂[t] it follows that h(fi) = h(fj) and thus fi = fj , i.e. i = j, since h is a
bijection. Hence Sni(h(fi)(xp(i)(1), . . . , xp(i)(ni)), σ̂[s1], . . . , σ̂[sni

])

= Sni(h(fi)(xp(i)(1), . . . , xp(i)(ni)), σ̂[t1], . . . , σ̂[tnj
]) and, consequently,

σ̂[sk] = σ̂[tk] for 1 ≤ k ≤ ni. By our hypothesis we get sk = tk for
1 ≤ k ≤ ni. Consequently, s = fi(s1, . . . , sni

) = fj(t1, . . . , tnj
) = t.

Surjectivity: For w ∈ X we have σ̂[w] = w.

Suppose that for any s ∈ Wτ (X) with depth(s) ≤ n there is an
s̃ ∈ Wτ (X) with σ̂[s̃] = s.

Let now t ∈ Wτ (X) be a term with depth(t) = n + 1. Then there
is an i ∈ I with t = fi(t1, . . . , tni

) and by our hypothesis there are
t̃1, . . . , t̃ni

∈ Wτ (X) such that σ̂[t̃k] = tk for 1 ≤ k ≤ ni. Further there
is a j ∈ I with h(fj) = fi and ni = nj . Now we consider the term
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t̃ := fj(t̃p(j)−1(1), . . . , t̃p(j)−1(ni)). There holds

σ̂[t̃] = Sni(h(fj)(xp(j)(1), . . . , xp(j)(nj)), σ̂[t̃p(j)−1(1)], . . . , σ̂[t̃p(j)−1(ni)]) =

= Sni(fi(xp(j)(1), . . . , xp(j)(ni)), tp(j)−1(1), . . . , tp(j)−1(ni))

(by hypothesis)

= fi(t1, . . . , tni
) = t.

(i) ⇒ (ii) : Since σ̂ is surjective for each j ∈ I there is an sj ∈
Wτ (X) with σ̂[sj ] = fj(x1, . . . , xnj

) which is minimal with respect to the
depth. Obviously, the case depth(sj) = 0 is impossible. Thus there are
a k ∈ I and r1, . . . , rnk

∈ Wτ (X) with sj = fk(r1, . . . , rnk
). So σ̂[sj ] =

σ̂[fk(r1, . . . , rnk
)] = Snk(σ(fk), σ̂[r1], . . . , σ̂[rnk

]) = fj(x1, . . . , xnj
). This

is only possible if σ(fk) ∈ X or σ(fk) = fj(a1, . . . , anj
) with a1, . . . , anj

∈
{x1, . . . , xnk

}, | {a1, . . . , anj
} |= nj , and thus nk ≥ nj . But the case

σ(fk) ∈ X is impossible. Otherwise there is an i ∈ {1, . . . , nk} with
σ(fk) = xi and σ̂[sj ] = σ̂[ri] where depth(sj) > depth(ri), this contradicts
the minimallity of sj . This shows that for all j ∈ I there are a k(j) ∈ I
with nk(j) ≥ nj and a1, . . . , anj

∈ Xnk(j)
with | {a1, . . . , anj

} |= nj such
that σ(fk(j)) = fj(a1, . . . , anj

).

Assume that nk(j) > nj for some j ∈ I. Then there is an x ∈
Xnk(j)

\ var(σ(fk(j))), i.e. x is not essential in σ(fk(j)) and thus σ̂ is
not a bijection on Wτ (X) (see [1], [6]), a contradiction. Thus nk(j) = nj

and σ(fk(j)) = fj(xπj(1), . . . , xπj(nj)) for some πj ∈ Snj
.

Assume that there are j, l ∈ I with l 6= k(j) such that fj is the
first operation symbol in σ(fl). We put t := σ̂[fl(x1, . . . , xnl

)]. Then
t = fj(t1, . . . , tnj

) for some t1, . . . , tnj
∈ Wτ (X). Since σ̂ is surjective,

there are s1, . . . , snj
∈ Wτ (X) with σ̂[si] = ti for 1 ≤ i ≤ nj . Then

σ̂[fk(j)(sπ−1
j (1), . . . , sπ−1

j (nj)
)]

= Snj (σ(fk(j)), σ̂[s
π−1

j (1)], . . . , σ̂[s
π−1

j (nj)
])

= Snj (fj(xπj(1), . . . , xπj(nj)), tπ−1
j (1), . . . , tπ−1

j (nj)
)

= fj(t1, . . . , tnj
).

Since fk(j)(sπ−1
j (1), . . . , sπ−1

j (nj)
) 6= fl(x1, . . . , xnl

), σ̂ is no injective, a

contradiction. Altogether this shows that the mapping h : Ω → Ω where
h(f) is the first operation symbol in σ(f) is a bijection on Ω preserving
the arity. Further, let p ∈ AI with p(i) := πi for i ∈ I. Then p ∈ P.

Consequently, we have σ(fi) = h(fi)(xp(i)(1), . . . , xp(i)(ni)) for all i ∈ I.

Let us give the following examples.
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Example 1. Let 2 ≤ n ∈ N. We consider the type τn = (n), where f
denotes the n-ary operation symbol. For π ∈ Sn we define:

σπ : f 7→ f(xπ(1), . . . , xπ(n)).

These hypersubstitutions are precisely the bijections, i.e. Bij(τn) =
{σπ | π ∈ Sn}.

In particular, if n = 2 then Bij(τ2) = {ε, σd} where σd is defined by

σd : f 7→ f(x2, x1).

Example 2. Let now τ = (2, 2) where f and g are the both binary op-
eration symbols. Then we define the following eight hypersubstitutions
σ1, . . . , σ8 by:

f 7→ g 7→

σ1 : f(x1, x2) g(x1, x2)
σ2 : f(x1, x2) g(x2, x1)
σ3 : f(x2, x1) g(x1, x2)
σ4 : f(x2, x1) g(x2, x1)
σ5 : g(x1, x2) f(x1, x2)
σ6 : g(x1, x2) f(x2, x1)
σ7 : g(x2, x1) f(x1, x2)
σ8 : g(x2, x1) f(x2, x1)

These hypersubstitutions are precisely the bijections, so

Bij(τ) = {σ1, . . . , σ8}.

3. ρ-solid varieties

In Section 1, we mentioned that any hypersubstitution σ can be uniquely
extended to a mapping σ̂ : Wτ (X) → Wτ (X) (σ̂ ∈ Wτ (X)Wτ (X)). Thus
a mapping ρ : Hyp(τ) → Wτ (X)Wτ (X) is defined by setting ρ(σ) = σ̂ for
all σ ∈ Hyp(τ).

In [4], the concept of a solid variety was introduced. By Birkhoff, a
variety V is a class of algebras of type τ satisfying a set Σ of identities,
i.e. V = ModΣ. For a variety V of type τ we denote by IdV the set of all
identities in V . The variety V is said to be solid iff σ̂[s] ≈ σ̂[t] ∈ IdV for
all s ≈ t ∈ IdV and all σ ∈ Hyp(τ). For a submonoid M of Hyp(τ), the
variety V is said to be M -solid iff σ̂[s] ≈ σ̂[t] ∈ IdV for all s ≈ t ∈ IdV
and all σ ∈ M (see [3]). If M = Hyp(τ) then we have solid varieties.

In this section we will study mappings ρ : Hyp(τ) → Wτ (X)Wτ (X)

and generalize the concept of an M -solid variety to the concept of an
M -ρ-solid variety. For convenience, we put σρ := ρ(σ) for σ ∈ Hyp(τ).
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Definition 2. Let ρ : Hyp(τ) → Wτ (X)Wτ (X) be a mapping and V be a
variety of type τ and M be a submonoid of Hyp(τ). V is called M -ρ-solid
iff σρ(s) ≈ σρ(t) ∈ IdV for all s ≈ t ∈ IdV and all σ ∈ M .

If M = Hyp(τ) then V is said to be ρ-solid.

Example 3. Let ρ : Hyp(τ) → Wτ (X)Wτ (X) be defined by ρ(σ) = σ̂ for
all σ ∈ Hyp(τ). Then the ρ-solid varieties are exactly the solid varieties,
which is clear by the appropriate definitions. L. Polák has determined all
solid varieties of semigroups in [5]. Besides the trivial variety, exactly the
self-dual varieties in the interval between the normalization Z∨RB of the
variety of all rectangular bands and the variety defined by the identities
x2 ≈ x4, x2y2z ≈ x2yx2yz, xy2z2 ≈ xyz2yz2, and xyzyx ≈ xyxzxyx as
well as the varieties RB of all rectangular, NB of all normal, and RegB
of all regular bands are solid.

In Section 2 we have checked that Bij(τ) forms a monoid. For par-
ticular mappings ρ : Hyp(τ) → Wτ (X)Wτ (X) the Bij(τ)-ρ-solid varieties
are of special interest, in particular for type τ = (2) and semigroup vari-
eties. They realize substitutions of operations in terms which are useful in
some calculational aspects of computer algebra systems. In the following
we will consider such mappings ρ : Hyp(τ) → Wτ (X)Wτ (X).

Definition 3. Let

fa : Hyp(τ) → Wτ (X)Wτ (X) and sa : Hyp(τ) → Wτ (X)Wτ (X)

be the following mappings: For σ ∈ Hyp(τ) we put
(i) σfa(x) := σsa(x) := x for x ∈ X;
(ii) σfa(fi(t1, . . . , tni

)) := Sni(σ(fi), σ
sa(t1), . . . , σ

sa(tni
)) and

σsa(fi(t1, . . . , tni
)) := fi(σ

fa(t1), . . . , σ
fa(tni

)) for i ∈ I and
t1, . . . , tni

∈ Wτ (X) where σsa(t1), . . . , σ
sa(tni

), σfa(t1), . . . ,
σfa(tni

)will be assumed to be already defined.

If we consider M -ρ-solid varieties of semigroups we have the type τ =
(2) and thus ρ : Hyp(2) → W(2)(X)W(2)(X) (where Hyp(2) := Hyp((2))).
If one considers semigroup identities, we have the associative law and we
can renounce of the operation symbol f and the brackets, i.e. we write
semigroup words only as sequences of variables.

Theorem 2. The trivial variety TR and the variety Z of all zero semi-
groups (defined by xy ≈ zt) are the only sa-solid varieties of semigroups.

Proof. Clearly, TR is sa-solid.
We show that for any σ ∈ Hyp(2) and any t ∈ W(2)(X) there holds

σsa(t) ≈ t ∈ IdZ.
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If t ∈ X then σsa(t) = t.
If t /∈ X then t = f(t1, t2) for some t1, t2 ∈ W(2)(X). Thus c(t) ≥ 2

and t ≈ xy ∈ IdZ. Further, there holds σsa(t) = f(σfa(t1), σ
fa(t2)) ≈

xy ∈ IdZ. Consequently, σsa(t) ≈ t ∈ IdZ.
This shows that σsa(s) ≈ s ≈ t ≈ σsa(t) holds in Z for all s ≈ t ∈ IdZ

and all σ ∈ Hyp(2), i.e. Z is sa-solid.
Conversely, let V be an sa-solid variety of semigroups. By σx (σy) we

will denote the hypersubstitution which maps the binary operation sym-
bol f to the term x1 (x2). Then σsa

x (f(f(x, y), z)) ≈ σsa
x (f(x, f(y, z))) ∈

IdV . This provides xz ≈ xy ∈ IdV . From σsa
y (f(f(x, y), z)) ≈

σsa
y (f(x, f(y, z))) ∈ IdV it follows yz ≈ xz ∈ IdV . Both identities

xz ≈ xy and yz ≈ xz provide yz ≈ xt, i.e. V ⊆ Z. But TR and Z are
the only subvarieties of Z.

Proposition 2. A variety V of semigroups is Bij(2)-sa-solid iff
(i) V ⊆ Mod{x(yz) ≈ (xy)z, xyz ≈ zxy} and
(ii) V ⊆ Mod{x(yz) ≈ (xy)z, xyz ≈ xzy ≈ zxy} if there is an

identity s ≈ t ∈ IdV with cv(s) = c(s) = 3 and c(t) 6= 3 or cv(t) 6= 3 or
var(t) 6= var(s).

Proof. We have already mentioned that Bij(2) = {ε, σd}.
Suppose that V is Bij(2)-sa-solid. Then σsa

d (f(f(x, y), z)) ≈
σsa

d (f(x, f(y, z))) ∈ IdV , so yxz ≈ xzy ∈ IdV . Let now s ≈ t ∈ IdV
with cv(s) = c(s) = 3.

If c(t) ≤ 2 then σsa
d (t) = t.

If c(t) ≥ 4 then σsa
d (t) ≈ t ∈ IdV is easy to check using yxz ≈ xzy ∈

IdV .
If c(t) = 3 and cv(t) = 1 then σsa

d (t) ≈ t ∈ IdV is obvious.
If c(t) = 3 and cv(t) = 2 then there are w1, w2 ∈ X such that

t = (w1w2)w2 or t = (w2w1)w2 or t = (w2w2)w1 or t = w1(w2w2)
or t = w2(w1w2) or t = w2(w2w1). Using yxz ≈ xzy ∈ IdV we get that
w1w2w2 ≈ w2w1w2 ≈ w2w2w1 in V . This shows that σsa

d (t) ≈ t ∈ IdV .
From cv(s) = c(s) = 3 it follows s = (w1w2)w3 or s = w1(w2w3) for

some w1, w2, w3 ∈ X. Without loss of generality let s = w1(w2w3), so
σsa

d (s) = w1w3w2.
If c(t) 6= 3 or cv(t) 6= 3, from σsa

d (s) ≈ σsa
d (t) ∈ IdV it follows

w1w3w2 ≈ t ∈ IdV . Consequently, w1w3w2 ≈ w1w2w3 ∈ IdV .
If cv(t) = c(t) = 3 and var(t) 6= var(s) then there is a w ∈ var(t) \

var(s). Substituting w by w2 we get s ≈ r ∈ IdV from s ≈ t ∈ IdV
where c(r) = 4. Then we get xyz ≈ zxy ∈ IdV as above.

Suppose that (i) and (ii) are satisfied. Let s ≈ t ∈ IdV . Then
εsa(s) ≈ εsa(t) ∈ IdV . We have to show that σsa

d (s) ≈ σsa
d (t) ∈ IdV and

consider the following cases:
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1) If c(s) 6= 3 or cv(s) 6= 3 and c(t) 6= 3 or cv(t) 6= 3 then we have
σsa

d (s) ≈ s ∈ IdV and σsa
d (t) ≈ t ∈ IdV as we have shown already. This

provides σsa
d (s) ≈ σsa

d (t) ∈ IdV .
2.1) If cv(s) = c(s) = 3 and c(t) 6= 3 or cv(t) 6= 3 or var(t) 6= var(s)

then xyz ≈ xzy ≈ zxy holds in V (by (ii)) and it is easy to see that
σsa

d (s) ≈ s ∈ IdV and σsa
d (t) ≈ t ∈ IdV , so σsa

d (s) ≈ σsa
d (t) ∈ IdV .

2.2) If cv(s) = c(s) = 3 and c(t) = 3 and cv(t) = 3 and var(t) =
var(s) then there are w1, w2, w3 ∈ X such that s, t ∈ {r1, . . . , r12} where
r1 = w2(w1w3) r2 = (w2w1)w3 r3 = w3(w2w1) r4 = (w3w2)w1

r5 = w1(w3w2) r6 = (w1w3)w2 r7 = w2(w3w1) r8 = (w2w3)w1

r9 = w3(w1w2) r10 = (w3w1)w2 r11 = w1(w2w3) r12 = (w1w2)w3.
Then σsa

d (r1) = r7, σsa
d (r2) = r12, σsa

d (r3) = r9, σsa
d (r4) = r8,

σsa
d (r5) = r11, σsa

d (r6) = r10, σsa
d (r7) = r1, σsa

d (r8) = r4, σsa
d (r9) = r3,

σsa
d (r10) = r6, σsa

d (r11) = r5, and σsa
d (r12) = r2. This shows that σsa

d (ri) ≈
σsa

d (rj) ∈ IdV for 1 ≤ i, j ≤ 6 or 7 ≤ i, j ≤ 12 by xyz ≈ zxy ∈ IdV .
If ri ≈ rj ∈ IdV with 1 ≤ i ≤ 6 or 7 ≤ j ≤ 12 or conversely, then
xyz ≈ xzy ∈ IdV . Together with xyz ≈ zxy ∈ IdV it is easy to check
that then σsa

d (ri) ≈ ri ∈ IdV and σsa
d (rj) ≈ rj ∈ IdV , i.e. σsa

d (ri) ≈
σsa

d (rj) ∈ IdV . Altogether this shows that σsa
d (s) ≈ σsa

d (t) ∈ IdV .
3) If cv(t) = c(t) = 3 then we get dually σsa

d (s) ≈ σsa
d (t) ∈ IdV .

Theorem 3. TR is the only fa-solid variety of semigroups.

Proof. Clearly, TR is fa-solid. Let V be an fa-solid variety of semi-
groups. From σfa

x (f(f(x, y), z)) ≈ σfa
x (f(x, f(y, z))) ∈ IdV it follows

xy ≈ x ∈ IdV . Moreover, σfa
y (f(f(x, y), z)) ≈ σfa

y (f(x, f(y, z))) ∈ IdV
provides z ≈ yz ∈ IdV . Both identities xy ≈ x and z ≈ yz give z ≈ y,
i.e. V = TR.

Proposition 3. A variety V of semigroups is Bij(2)-fa-solid iff
(i) V ⊆ Mod{x(yz) ≈ (xy)z, xyz ≈ zxy} and
(ii) V is a variety of commutative semigroups if there is an identity

s ≈ t ∈ IdV with cv(s) = c(s) = 2 and c(t) 6= 2 or cv(t) 6= 2 or
var(t) 6= var(s).

Proof. We have already mentioned that Bij(2) = {ε, σd}.

Suppose that V is Bij(2)-fa-solid. Then σfa
d (f(f(x, y), z)) ≈

σfa
d (f(x, f(y, z))) ∈ IdV , so zxy ≈ yzx ∈ IdV . Let now s ≈ t ∈ IdV

with cv(s) = c(s) = 2.

If c(t) = 1 then σfa
d (t) = t.

If c(t) ≥ 3 then σfa
d (t) ≈ t ∈ IdV is easy to check using zxy ≈ yzx ∈

IdV .
If c(t) = 2 and cv(t) = 1 then σfa

d (t) ≈ t ∈ IdV is obvious.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.26 On mappings of terms determined by hypersubstitutions

From cv(s) = c(s) = 2 it follows s = w1w2, so σfa
d (s) = w2w1.

If c(t) 6= 2 or cv(t) 6= 2 from σfa
d (s) ≈ σfa

d (t) ∈ IdV it follows
w2w1 ≈ t ∈ IdV and, consequently, w1w2 ≈ w2w1 ∈ IdV .

If cv(t) = c(t) = 2 and var(t) 6= var(s) then there is a w ∈ var(t) \
var(s). Substituting w by w2 we get s ≈ r ∈ IdV from s ≈ t ∈ IdV
where c(r) = 3. Then we get xy ≈ yx ∈ IdV as above.

Suppose that (i) and (ii) are satisfied. Let s ≈ t ∈ IdV . Then

εfa(s) ≈ εfa(t) ∈ IdV . We have to show that σfa
d (s) ≈ σfa

d (t) ∈ IdV
and consider the following cases:

1) If c(s) 6= 2 or cv(s) 6= 2 and c(t) 6= 2 or cv(t) 6= 2 then we have

σfa
d (s) ≈ s ∈ IdV and σfa

d (t) ≈ t ∈ IdV as we have shown already. This

provides σfa
d (s) ≈ σfa

d (t) ∈ IdV .

2.1) If cv(s) = c(s) = 2 and c(t) 6= 2 or cv(t) 6= 2 or var(t) 6= var(s)
then V is a variety of commutative semigroups (by (ii)) and it is easy to

see that σfa
d (s) ≈ s ∈ IdV and σfa

d (t) ≈ t ∈ IdV , so σfa
d (s) ≈ σfa

d (t) ∈
IdV .

2.2) If cv(s) = c(s) = 2 and c(t) = cv(t) = 2 and var(t) = var(s)
then there are w1, w2 ∈ X such that s = w1w2 or s = w2w1 and t = w1w2

or t = w2w1.

If s = t then σfa
d (s) = σfa

d (t).

If s 6= t then s ≈ t is the commutative law and we have σfa
d (s) ≈

σfa
d (t) ∈ IdV .

3) If cv(t) = c(t) = 2 then we get dually σfa
d (s) ≈ σfa

d (t) ∈ IdV .

Definition 4. We define a mapping γn : Hyp(τ) → Wτ (X)Wτ (X) for
each natural number n as follows: For σ ∈ Hyp(τ) we put
(i) σγ0 := σ̂;
(ii) σγn(x) := x for x ∈ X and 1 ≤ n ∈ N;
(iii) σγn(fi(t1, . . . , tni

)) := fi(σ
γn−1(t1), . . . , σ

γn−1(tni
)) for 1 ≤ n ∈ N,

i ∈ I, and t1, . . . , tni
∈ Wτ (X).

We put Hyp(n)(τ) := {σγn | σ ∈ Hyp(τ)} for n ∈ N.

For the hypersubstitution ε ∈ Hyp(τ) (the identity element in
Hyp(τ)) there holds εγn = ε̂ for all n ∈ N. This becomes clear by
the following considerations: We have εγ0 = ε̂ and suppose that εγn = ε̂
for some natural number n then there holds εγn+1(x) = x = ε̂[x] and
εγn+1(fi(t1, . . . , tni

))

= fi(ε
γn(t1), . . . , ε

γn(tni
))

= fi(ε̂[t1], . . . , ε̂[tni
])

= fi(t1, . . . , tni
)

= ε̂[fi(t1, . . . , tni
)].
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Proposition 4. The monoids (Hyp(n)(τ); ◦, ε̂) and Hyp(τ) are isomor-
phic for each natural number n.

Proof. Let n be a natural number. We define a mapping h : Hyp(τ) →
Hyp(n)(τ) by h(σ) := σγn for σ ∈ Hyp(τ). We show that h is injective.
For this let σ1, σ2 ∈ Hyp(τ) with σγn

1 = σγn

2 . Assume that σ1 6= σ2. Then
there is an i ∈ I with σ1(fi) 6= σ2(fi) and we have σ̂1[fi(x1, . . . , xni

)] 6=
σ̂2[fi(x1, . . . , xni

)]. Then we define:

(i) t0 := fi(x1, . . . , xni
);

(ii) tp+1 := fi(tp, x2, . . . , xni
) for p ∈ N.

It is easy to check that σγn

1 (tn) 6= σγn

2 (tn) because of σ̂1[t0] 6= σ̂2[t0],
which contradicts σγn

1 = σγn

2 . This shows that h is injective.

Clearly, h is surjective. Consequently, h is a bijective mapping.

It is left to show that h satisfies the homomorphic property. We will
show by induction on n that h(σ1◦hσ2) = h(σ1)◦h(σ2), i.e. (σ1◦hσ2)

γn =
σγn

1 ◦ σγn

2 .

If n = 0 then we have σγ0
1 ◦ σγ0

2 = σ̂1 ◦ σ̂2 = (σ1 ◦h σ2)̂ = (σ1 ◦h σ2)
γ0

(see [3]).

For n = m we suppose that σγm

1 ◦ σγm

2 = (σ1 ◦h σ2)
γm .

Let now n = m + 1. Obviously, we have (σ
γm+1

1 ◦ σ
γm+1

2 )(x) = x =
(σ1 ◦h σ2)

γm+1(x).

Let i ∈ I and t1, . . . , tni
∈ Wτ (X). Then there holds

(σ
γm+1

1 ◦ σ
γm+1

2 )(fi(t1, . . . , tni
)) = σ

γm+1

1 (fi(σ
γm

2 (t1), . . . , σ
γm

2 (tni
)))

= fi((σ
γm

1 ◦ σγm

2 )(t1), . . . , (σ
γm

1 ◦ σγm

2 )(tni
))

= fi((σ1 ◦h σ2)
γm(t1), . . . , (σ1 ◦h σ2)

γm(tni
)) (by hypothesis)

= (σ1 ◦h σ2)
γm+1 (fi(t1, . . . , tni

)).

Altogether, this shows that σ
γm+1

1 ◦ σ
γm+1

2 = (σ1 ◦h σ2)
γm+1 .

By definition, a variety V of type τ is M -γ0-solid iff V is M -solid.
The class of all solid varieties of semigroups was determined in [5]. We
will now characterize the γn-solid varieties of semigroups for 1 ≤ n ∈ N.
Here we need some else notations. For a fixed variable w ∈ X we put:

F0 := {f(f(x, y), z) ≈ f(x, f(y, z))} and

Fm+1 := {f(s, w) ≈ f(t, w) | s ≈ t ∈ Fm} ∪ {f(w, s) ≈ f(w, t) | s ≈
t ∈ Fm} for m ∈ N.

Theorem 4. Let 1 ≤ n ∈ N and V be a variety of semigroups. Then V
is γn-solid iff

x1 . . . xn+1 ≈ y1 . . . yn+1 ∈ IdV .

Proof. Suppose that V is γn-solid.
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Since the associative law is satisfied in V there holds Fn−1 ⊆ IdV .
Since V is γn-solid the application of σγn

x to the identities of Fn−1 gives
again identities in V :

I1 := {waxzwb ≈ waxywb | a, b ∈ N, a + b = n − 1} ⊆ IdV .

The application of σγn
y to the identities of Fn−1 provides

I2 := {wayzwb ≈ waxzwb | a, b ∈ N, a + b = n − 1} ⊆ IdV .

It is easy to check that one can derive x1 . . . xn+1 ≈ y1 . . . yn+1 from
I1 ∪ I2. Thus x1 . . . xn+1 ≈ y1 . . . yn+1 ∈ IdV .

Suppose now that x1 . . . xn+1 ≈ y1 . . . yn+1 ∈ IdV . We show that for
any σ ∈ Hyp(2) and any t ∈ W(2)(X) there holds σγn(t) ≈ t ∈ IdV.

If t contains at most n operation symbols then σγn(t) = t by definition
of the mapping σγn .

If t contains more than n operation symbols then c(t) ≥ n + 1 and
t ≈ x1 . . . xn+1 ∈ IdV because of x1 . . . xn+1 ≈ y1 . . . yn+1 ∈ IdV. Since
t contains more than n operation symbols, by definition of the mapping
σγn , the term σγn(t) contains at least n operation symbols and thus
c(σγn(t)) ≥ n + 1. Using x1 . . . xn+1 ≈ y1 . . . yn+1 ∈ IdV we get σγn(t) ≈
x1 . . . xn+1 ∈ IdV . Consequently, σγn(t) ≈ t ∈ IdV .

This shows that σγn(s) ≈ s ≈ t ≈ σγn(t) holds in V for s ≈ t ∈ IdV
and σ ∈ Hyp(2), i.e. V is γn-solid.

Corollary 1. TR and Z are the only γ1-solid varieties of semigroups.

Proof. By Theorem 4, a variety V of semigroups is γ1-solid iff x1x2 ≈
y1y2 ∈ IdV, i.e. V ⊆ Z. But TR and Z are the only subvarieties of
Z.
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Hölder-Pichler-Tempsky, Wien 1991, 97-118.

[3] Denecke, K., Wismath, S.L., Hyperidentities and clones, Gordon and Breach Sci-
entific Publisher, 2000.
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