On mappings of terms determined by hypersubstitutions

Jörg Koppitz, Slavcho Shtrakov

Communicated by V. M. Usenko

December 14, 2004

Abstract

The extensions of hypersubstitutions are mappings on the set of all terms. In the present paper we characterize all hypersubstitutions which provide bijections on the set of all terms. The set of all such hypersubstitutions forms a monoid.

On the other hand, one can modify each hypersubstitution to any mapping on the set of terms. For this we can consider mappings ρ from the set of all hypersubstitutions into the set of all mappings on the set of all terms. If for each hypersubstitution σ the application of $\rho(\sigma)$ to any identity in a given variety V is again an identity in V, so that variety is called ρ-solid. The concept of a ρ-solid variety generalizes the concept of a solid variety. In the present paper, we determine all ρ-solid varieties of semigroups for particular mappings ρ.

1. Basic Definitions and Notations

We fix a type $\tau=\left(n_{i}\right)_{i \in I}, n_{i}>0$ for all $i \in I$, and a set of operation symbols $\Omega:=\left\{f_{i} \mid i \in I\right\}$ where f_{i} is n_{i}-ary. Let $W_{\tau}(X)$ be the set of all terms of type τ over some fixed alphabet $X=\left\{x_{1}, x_{2}, \ldots\right\}$. Terms in $W_{\tau}\left(X_{n}\right)$ with $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}, n \geq 1$, are called n-ary. For natural numbers $m, n \geq 1$ we define a mapping $S_{m}^{n}: W_{\tau}\left(X_{n}\right) \times W_{\tau}\left(X_{m}\right)^{n} \rightarrow$ $W_{\tau}\left(X_{m}\right)$ in the following way: For $\left(t_{1}, \ldots, t_{n}\right) \in W_{\tau}\left(X_{m}\right)^{n}$ we put:

2000 Mathematics Subject Classification: 20M14, $20 M 07$.
Key words and phrases: ρ-solid, hypersubstitution, bijection.
(i) $S_{m}^{n}\left(x_{i}, t_{1}, \ldots, t_{n}\right):=t_{i}$ for $1 \leq i \leq n$;
(ii) $S_{m}^{n}\left(f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right), t_{1}, \ldots, t_{n}\right):=f_{i}\left(S_{m}^{n}\left(s_{1}, t_{1}, \ldots, t_{n}\right), \ldots, S_{m}^{n}\left(s_{n_{i}}\right.\right.$, $\left.t_{1}, \ldots, t_{n}\right)$) for $i \in I, s_{1}, \ldots, s_{n_{i}} \in W_{\tau}\left(X_{n}\right)$ where $S_{m}^{n}\left(s_{1}, t_{1}, \ldots, t_{n}\right)$, $\ldots, S_{m}^{n}\left(s_{n_{i}}, t_{1}, \ldots, t_{n}\right)$ will be assumed to be already defined.
If it is obvious what m is, we write S^{n}. For $t \in W_{\tau}(X)$ we define the depth of t in the following inductive way:
(i) $\operatorname{depth}(t):=0$ for $t \in X$;
(ii) $\operatorname{depth}(t):=\max \left\{\operatorname{depth}\left(t_{1}\right), \ldots, \operatorname{depth}\left(t_{n_{i}}\right)\right\}+1$ for $t=f_{i}\left(t_{1}, \ldots\right.$, $\left.t_{n_{i}}\right)$ with $i \in I, t_{1}, \ldots, t_{n_{i}} \in W_{\tau}(X)$ where $\operatorname{depth}\left(t_{1}\right), \ldots, \operatorname{depth}\left(t_{n_{i}}\right)$ will be assumed to be already defined.
By $c(t)$ we denote the length of a term t (i.e. the number of the variables occurring in t), $\operatorname{var}(t)$ denotes the set of all variables occurring in t and $c v(t)$ means the number of elements in the set $\operatorname{var}(t)$. Instead of $x_{1}, x_{2}, x_{3}, \ldots$ we write also x, y, z, \ldots.

The concept of a hypersubstitution was introduced in [2].
Definition 1. A mapping $\sigma: \Omega \rightarrow W_{\tau}(X)$ which assigns to every n_{i}-ary operation symbol $f_{i}, i \in I$, an n_{i}-ary term is called a hypersubstitution of type τ (shortly hypersubstitution). The set of all hypersubstitutions of type τ will be denoted by Hyp (τ).

To each hypersubstitution σ there belongs a mapping from the set of all terms of the form $f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$ to the terms $\sigma\left(f_{i}\right)$. It follows that every hypersubstitution of type τ then induces a mapping $\widehat{\sigma}: W_{\tau}(X) \rightarrow$ $W_{\tau}(X)$ as follows:
(i) $\widehat{\sigma}[w]:=w$ for $w \in X$;
(ii) $\widehat{\sigma}\left[f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right]:=S^{n}\left(\sigma\left(f_{i}\right), \widehat{\sigma}\left[t_{1}\right], \ldots, \widehat{\sigma}\left[t_{n_{i}}\right]\right)$ for $i \in I, t_{1}, \ldots, t_{n_{i}}$ $\in W_{\tau}(X)$ where $\widehat{\sigma}\left[t_{1}\right], \ldots, \widehat{\sigma}\left[t_{n_{i}}\right]$ will be assumed to be already defined.
By $\sigma_{1} \circ_{h} \sigma_{2}:=\widehat{\sigma}_{1} \circ \sigma_{2}$ is defined an associative operation on $\operatorname{Hyp}(\tau)$ where o denotes the usual composition of mappings. By ε we denote the hypersubstitution with $\varepsilon\left(f_{i}\right)=f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$ for $i \in I$, where ε deals as identity element. Then $\left(\operatorname{Hyp}(\tau) ; \circ_{h}, \varepsilon\right)$ forms a monoid, denoted by $\operatorname{Hyp}(\tau)$.

2. Bijections on $W_{\tau}(X)$

By $\operatorname{Bij}(\tau)$ we denote the set of all $\sigma \in \operatorname{Hyp}(\tau)$ such that $\widehat{\sigma}: W_{\tau}(X) \rightarrow$ $W_{\tau}(X)$ is a bijection on $W_{\tau}(X)$. Such hypersubstitutions have a high importance in computer science.

The product of two bijections is again a bijection. Further, for two hypersubstitutions σ_{1} and σ_{2} we have

$$
\left(\sigma_{1} \circ_{h} \sigma_{2}\right)=\widehat{\sigma}_{1} \circ \widehat{\sigma}_{2}
$$

(see [3]). So we have the following result.
Proposition 1. $\left(\operatorname{Bij}(\tau) ; \circ_{h}, \varepsilon\right)$ forms a submonoid of $\mathbf{H y p}(\tau)$.
For the characterization of $\operatorname{Bij}(\tau)$ we need the following notations:
(i) \mathcal{B} denotes the set of all bijections on Ω preserving the arity.
(ii) Let S_{n} be the set of all permutations of the set $\{1, \ldots, n\}$ for $1 \leq n \in \mathbb{N}$.
(iii) $A:=\bigcup_{1 \leq n \in \mathbb{N}} S_{n}$.
(iv) $\mathcal{P}:=\left\{p \in A^{I} \mid p(i) \in S_{n_{i}}\right.$ for $\left.i \in I\right\}$.

The following theorem characterizes $\operatorname{Bij}(\tau)$ for any type τ.
Theorem 1. Let $\tau=\left(n_{i}\right)_{i \in I}, n_{i}>0$ for all $i \in I$, be any type. For each $\sigma \in \operatorname{Hyp}(\tau)$ the following statements are equivalent:
(i) $\sigma \in \operatorname{Bij}(\tau)$.
(ii) There are $h \in \mathcal{B}$ and $p \in \mathcal{P}$ such that

$$
\sigma\left(f_{i}\right)=h\left(f_{i}\right)\left(x_{p(i)(1)}, \ldots, x_{p(i)\left(n_{i}\right)}\right) \text { for all } i \in I
$$

Proof. $(i i) \Rightarrow(i)$: We show by induction that $\widehat{\sigma}$ is injective and surjective. Injectivity: Let $s, t \in W_{\tau}(X)$ with $\widehat{\sigma}[s]=\widehat{\sigma}[t]$.
Suppose that the $\operatorname{depth}(s)=0$. Then $\operatorname{depth}(t)=0$ and s, t are variables with $s=\widehat{\sigma}[s]=\widehat{\sigma}[t]=t$.

Suppose that from $\widehat{\sigma}\left[s^{\bullet}\right]=\widehat{\sigma}\left[t^{6}\right]$ there follows $s^{6}=t^{6}$ for any $s^{6}, t^{6} \in$ $W_{\tau}(X)$ with $\operatorname{depth}\left(s^{\bullet}\right) \leq n$.

Let $\operatorname{depth}(s)=n+1$. Then $\operatorname{depth}(t) \geq 1$ and there are $i, j \in I$ with $s=f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)$ and $t=f_{j}\left(t_{1}, \ldots, t_{n_{j}}\right)$. Now we have
$\widehat{\sigma}[s]=S^{n_{i}}\left(h\left(f_{i}\right)\left(x_{p(i)(1)}, \ldots, x_{p(i)\left(n_{i}\right)}\right), \widehat{\sigma}\left[s_{1}\right], \ldots, \widehat{\sigma}\left[s_{n_{i}}\right]\right)$
and
$\widehat{\sigma}[t]=S^{n_{j}}\left(h\left(f_{j}\right)\left(x_{p(j)(1)}, \ldots, x_{p(j)\left(n_{j}\right)}\right), \widehat{\sigma}\left[t_{1}\right], \ldots, \widehat{\sigma}\left[t_{n_{j}}\right]\right)$. From $\widehat{\sigma}[s]=$ $\widehat{\sigma}[t]$ it follows that $h\left(f_{i}\right)=h\left(f_{j}\right)$ and thus $f_{i}=f_{j}$, i.e. $i=j$, since h is a bijection. Hence $S^{n_{i}}\left(h\left(f_{i}\right)\left(x_{p(i)(1)}, \ldots, x_{p(i)\left(n_{i}\right)}\right), \widehat{\sigma}\left[s_{1}\right], \ldots, \widehat{\sigma}\left[s_{n_{i}}\right]\right)$
$=S^{n_{i}}\left(h\left(f_{i}\right)\left(x_{p(i)(1)}, \ldots, x_{p(i)\left(n_{i}\right)}\right), \widehat{\sigma}\left[t_{1}\right], \ldots, \widehat{\sigma}\left[t_{n_{j}}\right]\right)$ and, consequently, $\widehat{\sigma}\left[s_{k}\right]=\widehat{\sigma}\left[t_{k}\right]$ for $1 \leq k \leq n_{i}$. By our hypothesis we get $s_{k}=t_{k}$ for $1 \leq k \leq n_{i}$. Consequently, $s=f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)=f_{j}\left(t_{1}, \ldots, t_{n_{j}}\right)=t$.

Surjectivity: For $w \in X$ we have $\widehat{\sigma}[w]=w$.
Suppose that for any $s \in W_{\tau}(X)$ with $\operatorname{depth}(s) \leq n$ there is an $\widetilde{s} \in W_{\tau}(X)$ with $\widehat{\sigma}[\widetilde{s}]=s$.

Let now $t \in W_{\tau}(X)$ be a term with $\operatorname{depth}(t)=n+1$. Then there is an $i \in I$ with $t=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$ and by our hypothesis there are $\widetilde{t}_{1}, \ldots, \widetilde{t}_{n_{i}} \in W_{\tau}(X)$ such that $\widehat{\sigma}\left[\tilde{t}_{k}\right]=t_{k}$ for $1 \leq k \leq n_{i}$. Further there is a $j \in I$ with $h\left(f_{j}\right)=f_{i}$ and $n_{i}=n_{j}$. Now we consider the term
$\widetilde{t}:=f_{j}\left(\widetilde{t}_{p(j)^{-1}(1)}, \ldots, \tilde{t}_{p(j)^{-1}\left(n_{i}\right)}\right)$. There holds

$$
\begin{aligned}
\widehat{\sigma}[\widetilde{t}] & =S^{n_{i}}\left(h\left(f_{j}\right)\left(x_{p(j)(1)}, \ldots, x_{p(j)\left(n_{j}\right)}\right), \widehat{\sigma}\left[\widetilde{t}_{p(j)^{-1}(1)}\right], \ldots, \widehat{\sigma}\left[\widetilde{t}_{p(j)^{-1}\left(n_{i}\right)}\right]\right)= \\
& =S^{n_{i}}\left(f_{i}\left(x_{p(j)(1)}, \ldots, x_{p(j)\left(n_{i}\right)}\right), t_{p(j)^{-1}(1)}, \ldots, t_{p(j)^{-1}\left(n_{i}\right)}\right)
\end{aligned}
$$

(by hypothesis)

$$
=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)=t
$$

$(i) \Rightarrow(i i)$: Since $\widehat{\sigma}$ is surjective for each $j \in I$ there is an $s_{j} \in$ $W_{\tau}(X)$ with $\widehat{\sigma}\left[s_{j}\right]=f_{j}\left(x_{1}, \ldots, x_{n_{j}}\right)$ which is minimal with respect to the depth. Obviously, the case $\operatorname{depth}\left(s_{j}\right)=0$ is impossible. Thus there are a $k \in I$ and $r_{1}, \ldots, r_{n_{k}} \in W_{\tau}(X)$ with $s_{j}=f_{k}\left(r_{1}, \ldots, r_{n_{k}}\right)$. So $\widehat{\sigma}\left[s_{j}\right]=$ $\widehat{\sigma}\left[f_{k}\left(r_{1}, \ldots, r_{n_{k}}\right)\right]=S^{n_{k}}\left(\sigma\left(f_{k}\right), \widehat{\sigma}\left[r_{1}\right], \ldots, \widehat{\sigma}\left[r_{n_{k}}\right]\right)=f_{j}\left(x_{1}, \ldots, x_{n_{j}}\right)$. This is only possible if $\sigma\left(f_{k}\right) \in X$ or $\sigma\left(f_{k}\right)=f_{j}\left(a_{1}, \ldots, a_{n_{j}}\right)$ with $a_{1}, \ldots, a_{n_{j}} \in$ $\left\{x_{1}, \ldots, x_{n_{k}}\right\},\left|\left\{a_{1}, \ldots, a_{n_{j}}\right\}\right|=n_{j}$, and thus $n_{k} \geq n_{j}$. But the case $\sigma\left(f_{k}\right) \in X$ is impossible. Otherwise there is an $i \in\left\{1, \ldots, n_{k}\right\}$ with $\sigma\left(f_{k}\right)=x_{i}$ and $\widehat{\sigma}\left[s_{j}\right]=\widehat{\sigma}\left[r_{i}\right]$ where $\operatorname{depth}\left(s_{j}\right)>\operatorname{depth}\left(r_{i}\right)$, this contradicts the minimallity of s_{j}. This shows that for all $j \in I$ there are a $k(j) \in I$ with $n_{k(j)} \geq n_{j}$ and $a_{1}, \ldots, a_{n_{j}} \in X_{n_{k(j)}}$ with $\left|\left\{a_{1}, \ldots, a_{n_{j}}\right\}\right|=n_{j}$ such that $\sigma\left(f_{k(j)}\right)=f_{j}\left(a_{1}, \ldots, a_{n_{j}}\right)$.

Assume that $n_{k(j)}>n_{j}$ for some $j \in I$. Then there is an $x \in$ $X_{n_{k(j)}} \backslash \operatorname{var}\left(\sigma\left(f_{k(j)}\right)\right)$, i.e. x is not essential in $\sigma\left(f_{k(j)}\right)$ and thus $\widehat{\sigma}$ is not a bijection on $W_{\tau}(X)$ (see [1], [6]), a contradiction. Thus $n_{k(j)}=n_{j}$ and $\sigma\left(f_{k(j)}\right)=f_{j}\left(x_{\pi_{j}(1)}, \ldots, x_{\pi_{j}\left(n_{j}\right)}\right)$ for some $\pi_{j} \in S_{n_{j}}$.

Assume that there are $j, l \in I$ with $l \neq k(j)$ such that f_{j} is the first operation symbol in $\sigma\left(f_{l}\right)$. We put $t:=\widehat{\sigma}\left[f_{l}\left(x_{1}, \ldots, x_{n_{l}}\right)\right]$. Then $t=f_{j}\left(t_{1}, \ldots, t_{n_{j}}\right)$ for some $t_{1}, \ldots, t_{n_{j}} \in W_{\tau}(X)$. Since $\widehat{\sigma}$ is surjective, there are $s_{1}, \ldots, s_{n_{j}} \in W_{\tau}(X)$ with $\widehat{\sigma}\left[s_{i}\right]=t_{i}$ for $1 \leq i \leq n_{j}$. Then $\widehat{\sigma}\left[f_{k(j)}\left(s_{\pi_{j}^{-1}(1)}, \ldots, s_{\pi_{j}^{-1}\left(n_{j}\right)}\right)\right]$

$$
=S^{n_{j}}\left(\sigma\left(f_{k(j)}\right), \widehat{\sigma}\left[s_{\pi_{j}^{-1}(1)}\right], \ldots, \widehat{\sigma}\left[s_{\pi_{j}^{-1}\left(n_{j}\right)}\right]\right)
$$

$$
=S^{n_{j}}\left(f_{j}\left(x_{\pi_{j}(1)}, \ldots, x_{\pi_{j}\left(n_{j}\right)}\right), t_{\pi_{j}^{-1}(1)}, \ldots, t_{\pi_{j}^{-1}\left(n_{j}\right)}\right)
$$

$=f_{j}\left(t_{1}, \ldots, t_{n_{j}}\right)$.
Since $f_{k(j)}\left(s_{\pi_{j}^{-1}(1)}, \ldots, s_{\pi_{j}^{-1}\left(n_{j}\right)}\right) \neq f_{l}\left(x_{1}, \ldots, x_{n_{l}}\right), \widehat{\sigma}$ is no injective, a contradiction. Altogether this shows that the mapping $h: \Omega \rightarrow \Omega$ where $h(f)$ is the first operation symbol in $\sigma(f)$ is a bijection on Ω preserving the arity. Further, let $p \in A^{I}$ with $p(i):=\pi_{i}$ for $i \in I$. Then $p \in \mathcal{P}$.

Consequently, we have $\sigma\left(f_{i}\right)=h\left(f_{i}\right)\left(x_{p(i)(1)}, \ldots, x_{p(i)\left(n_{i}\right)}\right)$ for all $i \in I$.

Let us give the following examples.

Example 1. Let $2 \leq n \in \mathbb{N}$. We consider the type $\tau_{n}=(n)$, where f denotes the n-ary operation symbol. For $\pi \in S_{n}$ we define:

$$
\sigma_{\pi}: f \mapsto f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)
$$

These hypersubstitutions are precisely the bijections, i.e. $\operatorname{Bij}\left(\tau_{n}\right)=$ $\left\{\sigma_{\pi} \mid \pi \in S_{n}\right\}$.

In particular, if $n=2$ then $\operatorname{Bij}\left(\tau_{2}\right)=\left\{\varepsilon, \sigma_{d}\right\}$ where σ_{d} is defined by

$$
\sigma_{d}: f \mapsto f\left(x_{2}, x_{1}\right)
$$

Example 2. Let now $\tau=(2,2)$ where f and g are the both binary operation symbols. Then we define the following eight hypersubstitutions $\sigma_{1}, \ldots, \sigma_{8}$ by:

$$
\begin{array}{lll}
& f \mapsto & g \mapsto \\
\hline \sigma_{1}: & f\left(x_{1}, x_{2}\right) & g\left(x_{1}, x_{2}\right) \\
\sigma_{2}: & f\left(x_{1}, x_{2}\right) & g\left(x_{2}, x_{1}\right) \\
\sigma_{3}: & f\left(x_{2}, x_{1}\right) & g\left(x_{1}, x_{2}\right) \\
\sigma_{4}: & f\left(x_{2}, x_{1}\right) & g\left(x_{2}, x_{1}\right) \\
\sigma_{5}: & g\left(x_{1}, x_{2}\right) & f\left(x_{1}, x_{2}\right) \\
\sigma_{6}: & g\left(x_{1}, x_{2}\right) & f\left(x_{2}, x_{1}\right) \\
\sigma_{7}: & g\left(x_{2}, x_{1}\right) & f\left(x_{1}, x_{2}\right) \\
\sigma_{8}: & g\left(x_{2}, x_{1}\right) & f\left(x_{2}, x_{1}\right)
\end{array}
$$

These hypersubstitutions are precisely the bijections, so

$$
\operatorname{Bij}(\tau)=\left\{\sigma_{1}, \ldots, \sigma_{8}\right\}
$$

3. ρ-solid varieties

In Section 1, we mentioned that any hypersubstitution σ can be uniquely extended to a mapping $\widehat{\sigma}: W_{\tau}(X) \rightarrow W_{\tau}(X)\left(\widehat{\sigma} \in W_{\tau}(X)^{W_{\tau}(X)}\right)$. Thus a mapping $\rho: \operatorname{Hyp}(\tau) \rightarrow W_{\tau}(X)^{W_{\tau}(X)}$ is defined by setting $\rho(\sigma)=\widehat{\sigma}$ for all $\sigma \in H y p(\tau)$.

In [4], the concept of a solid variety was introduced. By Birkhoff, a variety V is a class of algebras of type τ satisfying a set Σ of identities, i.e. $V=\operatorname{Mod} \Sigma$. For a variety V of type τ we denote by $I d V$ the set of all identities in V. The variety V is said to be solid iff $\widehat{\sigma}[s] \approx \widehat{\sigma}[t] \in I d V$ for all $s \approx t \in I d V$ and all $\sigma \in H y p(\tau)$. For a submonoid \mathbf{M} of $\operatorname{Hyp}(\tau)$, the variety V is said to be M-solid iff $\widehat{\sigma}[s] \approx \widehat{\sigma}[t] \in I d V$ for all $s \approx t \in I d V$ and all $\sigma \in M$ (see [3]). If $M=H y p(\tau)$ then we have solid varieties.

In this section we will study mappings $\rho: H y p(\tau) \rightarrow W_{\tau}(X)^{W_{\tau}(X)}$ and generalize the concept of an M-solid variety to the concept of an $M-\rho$-solid variety. For convenience, we put $\sigma^{\rho}:=\rho(\sigma)$ for $\sigma \in H y p(\tau)$.

Definition 2. Let $\rho: \operatorname{Hyp}(\tau) \rightarrow W_{\tau}(X)^{W_{\tau}(X)}$ be a mapping and V be a variety of type τ and \mathbf{M} be a submonoid of $\mathbf{H y p}(\tau) . V$ is called M - ρ-solid iff $\sigma^{\rho}(s) \approx \sigma^{\rho}(t) \in I d V$ for all $s \approx t \in I d V$ and all $\sigma \in M$.

If $M=\operatorname{Hyp}(\tau)$ then V is said to be ρ-solid.
Example 3. Let $\rho: \operatorname{Hyp}(\tau) \rightarrow W_{\tau}(X)^{W_{\tau}(X)}$ be defined by $\rho(\sigma)=\widehat{\sigma}$ for all $\sigma \in \operatorname{Hyp}(\tau)$. Then the ρ-solid varieties are exactly the solid varieties, which is clear by the appropriate definitions. L. Polák has determined all solid varieties of semigroups in [5]. Besides the trivial variety, exactly the self-dual varieties in the interval between the normalization $Z \vee R B$ of the variety of all rectangular bands and the variety defined by the identities $x^{2} \approx x^{4}, x^{2} y^{2} z \approx x^{2} y x^{2} y z, x y^{2} z^{2} \approx x y z^{2} y z^{2}$, and $x y z y x \approx x y x z x y x$ as well as the varieties $R B$ of all rectangular, $N B$ of all normal, and RegB of all regular bands are solid.

In Section 2 we have checked that $\operatorname{Bij}(\tau)$ forms a monoid. For particular mappings $\rho: \operatorname{Hyp}(\tau) \rightarrow W_{\tau}(X)^{W_{\tau}(X)}$ the $\operatorname{Bij}(\tau)-\rho$-solid varieties are of special interest, in particular for type $\tau=(2)$ and semigroup varieties. They realize substitutions of operations in terms which are useful in some calculational aspects of computer algebra systems. In the following we will consider such mappings $\rho: \operatorname{Hyp}(\tau) \rightarrow W_{\tau}(X)^{W_{\tau}(X)}$.

Definition 3. Let

$$
f a: H y p(\tau) \rightarrow W_{\tau}(X)^{W_{\tau}(X)} \text { and } s a: H y p(\tau) \rightarrow W_{\tau}(X)^{W_{\tau}(X)}
$$

be the following mappings: For $\sigma \in \operatorname{Hyp}(\tau)$ we put
(i) $\sigma^{f a}(x):=\sigma^{s a}(x):=x$ for $x \in X$;
(ii) $\sigma^{f a}\left(f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right):=S^{n_{i}}\left(\sigma\left(f_{i}\right), \sigma^{s a}\left(t_{1}\right), \ldots, \sigma^{s a}\left(t_{n_{i}}\right)\right)$ and $\sigma^{s a}\left(f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right):=f_{i}\left(\sigma^{f a}\left(t_{1}\right), \ldots, \sigma^{f a}\left(t_{n_{i}}\right)\right)$ for $i \in I$ and $t_{1}, \ldots, t_{n_{i}} \in W_{\tau}(X)$ where $\sigma^{s a}\left(t_{1}\right), \ldots, \sigma^{s a}\left(t_{n_{i}}\right), \sigma^{f a}\left(t_{1}\right), \ldots$, $\sigma^{f a}\left(t_{n_{i}}\right)$ will be assumed to be already defined.

If we consider $M-\rho$-solid varieties of semigroups we have the type $\tau=$ (2) and thus $\rho: H y p(2) \rightarrow W_{(2)}(X)^{W_{(2)}(X)}($ where $H y p(2):=H y p((2)))$. If one considers semigroup identities, we have the associative law and we can renounce of the operation symbol f and the brackets, i.e. we write semigroup words only as sequences of variables.

Theorem 2. The trivial variety $T R$ and the variety Z of all zero semigroups (defined by $x y \approx z t$) are the only $s a$-solid varieties of semigroups.

Proof. Clearly, TR is sa-solid.
We show that for any $\sigma \in H y p(2)$ and any $t \in W_{(2)}(X)$ there holds $\sigma^{s a}(t) \approx t \in I d Z$.

If $t \in X$ then $\sigma^{s a}(t)=t$.
If $t \notin X$ then $t=f\left(t_{1}, t_{2}\right)$ for some $t_{1}, t_{2} \in W_{(2)}(X)$. Thus $c(t) \geq 2$ and $t \approx x y \in I d Z$. Further, there holds $\sigma^{s a}(t)=f\left(\sigma^{f a}\left(t_{1}\right), \sigma^{f a}\left(t_{2}\right)\right) \approx$ $x y \in I d Z$. Consequently, $\sigma^{s a}(t) \approx t \in I d Z$.

This shows that $\sigma^{s a}(s) \approx s \approx t \approx \sigma^{s a}(t)$ holds in Z for all $s \approx t \in I d Z$ and all $\sigma \in H y p(2)$, i.e. Z is $s a$-solid.

Conversely, let V be an $s a$-solid variety of semigroups. By $\sigma_{x}\left(\sigma_{y}\right)$ we will denote the hypersubstitution which maps the binary operation symbol f to the term $x_{1}\left(x_{2}\right)$. Then $\sigma_{x}^{s a}(f(f(x, y), z)) \approx \sigma_{x}^{s a}(f(x, f(y, z))) \in$ $I d V$. This provides $x z \approx x y \in I d V$. From $\sigma_{y}^{s a}(f(f(x, y), z)) \approx$ $\sigma_{y}^{s a}(f(x, f(y, z))) \in I d V$ it follows $y z \approx x z \in I d V$. Both identities $x z \approx x y$ and $y z \approx x z$ provide $y z \approx x t$, i.e. $V \subseteq Z$. But $T R$ and Z are the only subvarieties of Z.

Proposition 2. A variety V of semigroups is Bij(2)-sa-solid iff
(i) $V \subseteq \operatorname{Mod}\{x(y z) \approx(x y) z, x y z \approx z x y\}$ and
(ii) $V \subseteq \operatorname{Mod}\{x(y z) \approx(x y) z, x y z \approx x z y \approx z x y\}$ if there is an identity $s \approx t \in I d V$ with $c v(s)=c(s)=3$ and $c(t) \neq 3$ or $c v(t) \neq 3$ or $\operatorname{var}(t) \neq \operatorname{var}(s)$.
Proof. We have already mentioned that $\operatorname{Bij}(2)=\left\{\varepsilon, \sigma_{d}\right\}$.
Suppose that V is $B i j(2)$-sa-solid. Then $\sigma_{d}^{s a}(f(f(x, y), z)) \approx$ $\sigma_{d}^{s a}(f(x, f(y, z))) \in I d V$, so $y x z \approx x z y \in I d V$. Let now $s \approx t \in I d V$ with $c v(s)=c(s)=3$.

If $c(t) \leq 2$ then $\sigma_{d}^{s a}(t)=t$.
If $c(t) \geq 4$ then $\sigma_{d}^{s a}(t) \approx t \in I d V$ is easy to check using $y x z \approx x z y \in$ $I d V$.

If $c(t)=3$ and $c v(t)=1$ then $\sigma_{d}^{s a}(t) \approx t \in I d V$ is obvious.
If $c(t)=3$ and $c v(t)=2$ then there are $w_{1}, w_{2} \in X$ such that $t=\left(w_{1} w_{2}\right) w_{2}$ or $t=\left(w_{2} w_{1}\right) w_{2}$ or $t=\left(w_{2} w_{2}\right) w_{1}$ or $t=w_{1}\left(w_{2} w_{2}\right)$ or $t=w_{2}\left(w_{1} w_{2}\right)$ or $t=w_{2}\left(w_{2} w_{1}\right)$. Using $y x z \approx x z y \in I d V$ we get that $w_{1} w_{2} w_{2} \approx w_{2} w_{1} w_{2} \approx w_{2} w_{2} w_{1}$ in V. This shows that $\sigma_{d}^{s a}(t) \approx t \in I d V$.

From $c v(s)=c(s)=3$ it follows $s=\left(w_{1} w_{2}\right) w_{3}$ or $s=w_{1}\left(w_{2} w_{3}\right)$ for some $w_{1}, w_{2}, w_{3} \in X$. Without loss of generality let $s=w_{1}\left(w_{2} w_{3}\right)$, so $\sigma_{d}^{s a}(s)=w_{1} w_{3} w_{2}$.

If $c(t) \neq 3$ or $c v(t) \neq 3$, from $\sigma_{d}^{s a}(s) \approx \sigma_{d}^{s a}(t) \in I d V$ it follows $w_{1} w_{3} w_{2} \approx t \in I d V$. Consequently, $w_{1} w_{3} w_{2} \approx w_{1} w_{2} w_{3} \in I d V$.

If $c v(t)=c(t)=3$ and $\operatorname{var}(t) \neq \operatorname{var}(s)$ then there is a $w \in \operatorname{var}(t) \backslash$ $\operatorname{var}(s)$. Substituting w by w^{2} we get $s \approx r \in I d V$ from $s \approx t \in I d V$ where $c(r)=4$. Then we get $x y z \approx z x y \in I d V$ as above.

Suppose that (i) and (ii) are satisfied. Let $s \approx t \in I d V$. Then $\varepsilon^{s a}(s) \approx \varepsilon^{s a}(t) \in I d V$. We have to show that $\sigma_{d}^{s a}(s) \approx \sigma_{d}^{s a}(t) \in I d V$ and consider the following cases:

1) If $c(s) \neq 3$ or $c v(s) \neq 3$ and $c(t) \neq 3$ or $c v(t) \neq 3$ then we have $\sigma_{d}^{s a}(s) \approx s \in I d V$ and $\sigma_{d}^{s a}(t) \approx t \in I d V$ as we have shown already. This provides $\sigma_{d}^{s a}(s) \approx \sigma_{d}^{s a}(t) \in I d V$.
2.1) If $c v(s)=c(s)=3$ and $c(t) \neq 3$ or $c v(t) \neq 3$ or $\operatorname{var}(t) \neq \operatorname{var}(s)$ then $x y z \approx x z y \approx z x y$ holds in V (by (ii)) and it is easy to see that $\sigma_{d}^{s a}(s) \approx s \in I d V$ and $\sigma_{d}^{s a}(t) \approx t \in I d V$, so $\sigma_{d}^{s a}(s) \approx \sigma_{d}^{s a}(t) \in I d V$.
2.2) If $c v(s)=c(s)=3$ and $c(t)=3$ and $c v(t)=3$ and $\operatorname{var}(t)=$ $\operatorname{var}(s)$ then there are $w_{1}, w_{2}, w_{3} \in X$ such that $s, t \in\left\{r_{1}, \ldots, r_{12}\right\}$ where $r_{1}=w_{2}\left(w_{1} w_{3}\right) \quad r_{2}=\left(w_{2} w_{1}\right) w_{3} \quad r_{3}=w_{3}\left(w_{2} w_{1}\right) \quad r_{4}=\left(w_{3} w_{2}\right) w_{1}$ $r_{5}=w_{1}\left(w_{3} w_{2}\right) \quad r_{6}=\left(w_{1} w_{3}\right) w_{2} \quad r_{7}=w_{2}\left(w_{3} w_{1}\right) \quad r_{8}=\left(w_{2} w_{3}\right) w_{1}$ $r_{9}=w_{3}\left(w_{1} w_{2}\right) \quad r_{10}=\left(w_{3} w_{1}\right) w_{2} \quad r_{11}=w_{1}\left(w_{2} w_{3}\right) \quad r_{12}=\left(w_{1} w_{2}\right) w_{3}$.

Then $\sigma_{d}^{s a}\left(r_{1}\right)=r_{7}, \sigma_{d}^{s a}\left(r_{2}\right)=r_{12}, \sigma_{d}^{s a}\left(r_{3}\right)=r_{9}, \sigma_{d}^{s a}\left(r_{4}\right)=r_{8}$, $\sigma_{d}^{s a}\left(r_{5}\right)=r_{11}, \sigma_{d}^{s a}\left(r_{6}\right)=r_{10}, \sigma_{d}^{s a}\left(r_{7}\right)=r_{1}, \sigma_{d}^{s a}\left(r_{8}\right)=r_{4}, \sigma_{d}^{s a}\left(r_{9}\right)=r_{3}$, $\sigma_{d}^{s a}\left(r_{10}\right)=r_{6}, \sigma_{d}^{s a}\left(r_{11}\right)=r_{5}$, and $\sigma_{d}^{s a}\left(r_{12}\right)=r_{2}$. This shows that $\sigma_{d}^{s a}\left(r_{i}\right) \approx$ $\sigma_{d}^{s a}\left(r_{j}\right) \in I d V$ for $1 \leq i, j \leq 6$ or $7 \leq i, j \leq 12$ by $x y z \approx z x y \in I d V$. If $r_{i} \approx r_{j} \in I d V$ with $1 \leq i \leq 6$ or $7 \leq j \leq 12$ or conversely, then $x y z \approx x z y \in I d V$. Together with $x y z \approx z x y \in I d V$ it is easy to check that then $\sigma_{d}^{s a}\left(r_{i}\right) \approx r_{i} \in I d V$ and $\sigma_{d}^{s a}\left(r_{j}\right) \approx r_{j} \in I d V$, i.e. $\sigma_{d}^{s a}\left(r_{i}\right) \approx$ $\sigma_{d}^{s a}\left(r_{j}\right) \in I d V$. Altogether this shows that $\sigma_{d}^{s a}(s) \approx \sigma_{d}^{s a}(t) \in I d V$.
3) If $c v(t)=c(t)=3$ then we get dually $\sigma_{d}^{s a}(s) \approx \sigma_{d}^{s a}(t) \in I d V$.

Theorem 3. $T R$ is the only $f a$-solid variety of semigroups.
Proof. Clearly, $T R$ is $f a$-solid. Let V be an $f a$-solid variety of semigroups. From $\sigma_{x}^{f a}(f(f(x, y), z)) \approx \sigma_{x}^{f a}(f(x, f(y, z))) \in I d V$ it follows $x y \approx x \in I d V$. Moreover, $\sigma_{y}^{f a}(f(f(x, y), z)) \approx \sigma_{y}^{f a}(f(x, f(y, z))) \in I d V$ provides $z \approx y z \in I d V$. Both identities $x y \approx x$ and $z \approx y z$ give $z \approx y$, i.e. $V=T R$.

Proposition 3. A variety V of semigroups is Bij(2)-fa-solid iff
(i) $V \subseteq \operatorname{Mod}\{x(y z) \approx(x y) z, x y z \approx z x y\}$ and
(ii) V is a variety of commutative semigroups if there is an identity $s \approx t \in I d V$ with $\operatorname{cv}(s)=c(s)=2$ and $c(t) \neq 2$ or $c v(t) \neq 2$ or $\operatorname{var}(t) \neq \operatorname{var}(s)$.

Proof. We have already mentioned that $\operatorname{Bij}(2)=\left\{\varepsilon, \sigma_{d}\right\}$.
Suppose that V is $B i j(2)$-fa-solid. Then $\sigma_{d}^{f a}(f(f(x, y), z)) \approx$ $\sigma_{d}^{f a}(f(x, f(y, z))) \in I d V$, so $z x y \approx y z x \in I d V$. Let now $s \approx t \in I d V$ with $c v(s)=c(s)=2$.

If $c(t)=1$ then $\sigma_{d}^{f a}(t)=t$.
If $c(t) \geq 3$ then $\sigma_{d}^{f a}(t) \approx t \in I d V$ is easy to check using $z x y \approx y z x \in$ $I d V$.

If $c(t)=2$ and $c v(t)=1$ then $\sigma_{d}^{f a}(t) \approx t \in I d V$ is obvious.

From $c v(s)=c(s)=2$ it follows $s=w_{1} w_{2}$, so $\sigma_{d}^{f a}(s)=w_{2} w_{1}$.
If $c(t) \neq 2$ or $c v(t) \neq 2$ from $\sigma_{d}^{f a}(s) \approx \sigma_{d}^{f a}(t) \in I d V$ it follows $w_{2} w_{1} \approx t \in I d V$ and, consequently, $w_{1} w_{2} \approx w_{2} w_{1} \in I d V$.

If $c v(t)=c(t)=2$ and $\operatorname{var}(t) \neq \operatorname{var}(s)$ then there is a $w \in \operatorname{var}(t) \backslash$ $\operatorname{var}(s)$. Substituting w by w^{2} we get $s \approx r \in I d V$ from $s \approx t \in I d V$ where $c(r)=3$. Then we get $x y \approx y x \in I d V$ as above.

Suppose that (i) and (ii) are satisfied. Let $s \approx t \in I d V$. Then $\varepsilon^{f a}(s) \approx \varepsilon^{f a}(t) \in I d V$. We have to show that $\sigma_{d}^{f a}(s) \approx \sigma_{d}^{f a}(t) \in I d V$ and consider the following cases:

1) If $c(s) \neq 2$ or $c v(s) \neq 2$ and $c(t) \neq 2$ or $c v(t) \neq 2$ then we have $\sigma_{d}^{f a}(s) \approx s \in I d V$ and $\sigma_{d}^{f a}(t) \approx t \in I d V$ as we have shown already. This provides $\sigma_{d}^{f a}(s) \approx \sigma_{d}^{f a}(t) \in I d V$.
2.1) If $c v(s)=c(s)=2$ and $c(t) \neq 2$ or $c v(t) \neq 2$ or $\operatorname{var}(t) \neq \operatorname{var}(s)$ then V is a variety of commutative semigroups (by (ii)) and it is easy to see that $\sigma_{d}^{f a}(s) \approx s \in I d V$ and $\sigma_{d}^{f a}(t) \approx t \in I d V$, so $\sigma_{d}^{f a}(s) \approx \sigma_{d}^{f a}(t) \in$ $I d V$.
2.2) If $c v(s)=c(s)=2$ and $c(t)=c v(t)=2$ and $\operatorname{var}(t)=\operatorname{var}(s)$ then there are $w_{1}, w_{2} \in X$ such that $s=w_{1} w_{2}$ or $s=w_{2} w_{1}$ and $t=w_{1} w_{2}$ or $t=w_{2} w_{1}$.

If $s=t$ then $\sigma_{d}^{f a}(s)=\sigma_{d}^{f a}(t)$.
If $s \neq t$ then $s \approx t$ is the commutative law and we have $\sigma_{d}^{f a}(s) \approx$ $\sigma_{d}^{f a}(t) \in I d V$.
3) If $c v(t)=c(t)=2$ then we get dually $\sigma_{d}^{f a}(s) \approx \sigma_{d}^{f a}(t) \in I d V$.

Definition 4. We define a mapping $\gamma_{n}: \operatorname{Hyp}(\tau) \rightarrow W_{\tau}(X)^{W_{\tau}(X)}$ for each natural number n as follows: For $\sigma \in H y p(\tau)$ we put
(i) $\sigma^{\gamma_{0}}:=\widehat{\sigma}$;
(ii) $\quad \sigma^{\gamma_{n}}(x):=x$ for $x \in X$ and $1 \leq n \in \mathbb{N}$;
(iii) $\sigma^{\gamma_{n}}\left(f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right):=f_{i}\left(\sigma^{\gamma_{n-1}}\left(t_{1}\right), \ldots, \sigma^{\gamma_{n-1}}\left(t_{n_{i}}\right)\right)$ for $1 \leq n \in \mathbb{N}$, $i \in I$, and $t_{1}, \ldots, t_{n_{i}} \in W_{\tau}(X)$.
We put $\operatorname{Hyp}^{(n)}(\tau):=\left\{\sigma^{\gamma_{n}} \mid \sigma \in H y p(\tau)\right\}$ for $n \in \mathbb{N}$.
For the hypersubstitution $\varepsilon \in \operatorname{Hyp}(\tau)$ (the identity element in $H y p(\tau))$ there holds $\varepsilon^{\gamma_{n}}=\widehat{\varepsilon}$ for all $n \in \mathbb{N}$. This becomes clear by the following considerations: We have $\varepsilon^{\gamma_{0}}=\widehat{\varepsilon}$ and suppose that $\varepsilon^{\gamma_{n}}=\widehat{\varepsilon}$ for some natural number n then there holds $\varepsilon^{\gamma_{n+1}}(x)=x=\widehat{\varepsilon}[x]$ and $\varepsilon^{\gamma_{n+1}}\left(f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right)$
$=f_{i}\left(\varepsilon^{\gamma_{n}}\left(t_{1}\right), \ldots, \varepsilon^{\gamma_{n}}\left(t_{n_{i}}\right)\right)$
$=f_{i}\left(\widehat{\varepsilon}\left[t_{1}\right], \ldots, \widehat{\varepsilon}\left[t_{n_{i}}\right]\right)$
$=f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)$
$=\widehat{\varepsilon}\left[f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right]$.

Proposition 4. The monoids $\left(\operatorname{Hyp}^{(n)}(\tau) ; \circ, \widehat{\varepsilon}\right)$ and $\mathbf{H y p}(\tau)$ are isomorphic for each natural number n.

Proof. Let n be a natural number. We define a mapping $h: \operatorname{Hyp}(\tau) \rightarrow$ $H_{y p}{ }^{(n)}(\tau)$ by $h(\sigma):=\sigma^{\gamma_{n}}$ for $\sigma \in \operatorname{Hyp}(\tau)$. We show that h is injective. For this let $\sigma_{1}, \sigma_{2} \in H y p(\tau)$ with $\sigma_{1}^{\gamma_{n}}=\sigma_{2}^{\gamma_{n}}$. Assume that $\sigma_{1} \neq \sigma_{2}$. Then there is an $i \in I$ with $\sigma_{1}\left(f_{i}\right) \neq \sigma_{2}\left(f_{i}\right)$ and we have $\widehat{\sigma}_{1}\left[f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)\right] \neq$ $\widehat{\sigma}_{2}\left[f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)\right]$. Then we define:
(i) $t_{0}:=f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$;
(ii) $t_{p+1}:=f_{i}\left(t_{p}, x_{2}, \ldots, x_{n_{i}}\right)$ for $p \in \mathbb{N}$.

It is easy to check that $\sigma_{1}^{\gamma_{n}}\left(t_{n}\right) \neq \sigma_{2}^{\gamma_{n}}\left(t_{n}\right)$ because of $\widehat{\sigma}_{1}\left[t_{0}\right] \neq \widehat{\sigma}_{2}\left[t_{0}\right]$, which contradicts $\sigma_{1}^{\gamma_{n}}=\sigma_{2}^{\gamma_{n}}$. This shows that h is injective.

Clearly, h is surjective. Consequently, h is a bijective mapping.
It is left to show that h satisfies the homomorphic property. We will show by induction on n that $h\left(\sigma_{1} \circ_{h} \sigma_{2}\right)=h\left(\sigma_{1}\right) \circ h\left(\sigma_{2}\right)$, i.e. $\left(\sigma_{1} \circ_{h} \sigma_{2}\right)^{\gamma_{n}}=$ $\sigma_{1}^{\gamma_{n}} \circ \sigma_{2}^{\gamma_{n}}$.

If $n=0$ then we have $\sigma_{1}^{\gamma_{0}} \circ \sigma_{2}^{\gamma_{0}}=\widehat{\sigma}_{1} \circ \widehat{\sigma}_{2}=\left(\sigma_{1} \circ_{h} \sigma_{2}\right)=\left(\sigma_{1} \circ h \sigma_{2}\right)^{\gamma_{0}}$ (see [3]).

For $n=m$ we suppose that $\sigma_{1}^{\gamma_{m}} \circ \sigma_{2}^{\gamma_{m}}=\left(\sigma_{1} \circ_{h} \sigma_{2}\right)^{\gamma_{m}}$.
Let now $n=m+1$. Obviously, we have $\left(\sigma_{1}^{\gamma_{m+1}} \circ \sigma_{2}^{\gamma_{m+1}}\right)(x)=x=$ $\left(\sigma_{1} \circ_{h} \sigma_{2}\right)^{\gamma_{m+1}}(x)$.

Let $i \in I$ and $t_{1}, \ldots, t_{n_{i}} \in W_{\tau}(X)$. Then there holds
$\left(\sigma_{1}^{\gamma_{m+1}} \circ \sigma_{2}^{\gamma_{m+1}}\right)\left(f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right)=\sigma_{1}^{\gamma_{m+1}}\left(f_{i}\left(\sigma_{2}^{\gamma_{m}}\left(t_{1}\right), \ldots, \sigma_{2}^{\gamma_{m}}\left(t_{n_{i}}\right)\right)\right)$
$=f_{i}\left(\left(\sigma_{1}^{\gamma_{m}} \circ \sigma_{2}^{\gamma_{m}}\right)\left(t_{1}\right), \ldots,\left(\sigma_{1}^{\gamma_{m}} \circ \sigma_{2}^{\gamma_{m}}\right)\left(t_{n_{i}}\right)\right)$
$=f_{i}\left(\left(\sigma_{1} \circ_{h} \sigma_{2}\right)^{\gamma_{m}}\left(t_{1}\right), \ldots\left(\sigma_{1} \circ_{h} \sigma_{2}\right)^{\gamma_{m}}\left(t_{n_{i}}\right)\right)$ (by hypothesis)
$=\left(\sigma_{1} \circ_{h} \sigma_{2}\right)^{\gamma_{m+1}}\left(f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right)$.
Altogether, this shows that $\sigma_{1}^{\gamma_{m+1}} \circ \sigma_{2}^{\gamma_{m+1}}=\left(\sigma_{1} \circ_{h} \sigma_{2}\right)^{\gamma_{m+1}}$.

By definition, a variety V of type τ is $M-\gamma_{0}$-solid iff V is M-solid. The class of all solid varieties of semigroups was determined in [5]. We will now characterize the γ_{n}-solid varieties of semigroups for $1 \leq n \in \mathbb{N}$. Here we need some else notations. For a fixed variable $w \in X$ we put:

$$
\begin{aligned}
& F_{0}:=\{f(f(x, y), z) \approx f(x, f(y, z))\} \text { and } \\
& F_{m+1}:=\left\{f(s, w) \approx f(t, w) \mid s \approx t \in F_{m}\right\} \cup\{f(w, s) \approx f(w, t) \mid s \approx
\end{aligned}
$$ $\left.t \in F_{m}\right\}$ for $m \in \mathbb{N}$.

Theorem 4. Let $1 \leq n \in \mathbb{N}$ and V be a variety of semigroups. Then V is γ_{n}-solid iff

$$
x_{1} \ldots x_{n+1} \approx y_{1} \ldots y_{n+1} \in I d V
$$

Proof. Suppose that V is γ_{n}-solid.

Since the associative law is satisfied in V there holds $F_{n-1} \subseteq I d V$. Since V is γ_{n}-solid the application of $\sigma_{x}^{\gamma_{n}}$ to the identities of F_{n-1} gives again identities in V :

$$
I_{1}:=\left\{w^{a} x z w^{b} \approx w^{a} x y w^{b} \mid a, b \in \mathbb{N}, a+b=n-1\right\} \subsetneq I d V .
$$

The application of $\sigma_{y}^{\gamma_{n}}$ to the identities of F_{n-1} provides

$$
I_{2}:=\left\{w^{a} y z w^{b} \approx w^{a} x z w^{b} \mid a, b \in \mathbb{N}, a+b=n-1\right\} \subseteq I d V
$$

It is easy to check that one can derive $x_{1} \ldots x_{n+1} \approx y_{1} \ldots y_{n+1}$ from $I_{1} \cup I_{2}$. Thus $x_{1} \ldots x_{n+1} \approx y_{1} \ldots y_{n+1} \in I d V$.

Suppose now that $x_{1} \ldots x_{n+1} \approx y_{1} \ldots y_{n+1} \in I d V$. We show that for any $\sigma \in \operatorname{Hyp}(2)$ and any $t \in W_{(2)}(X)$ there holds $\sigma^{\gamma_{n}}(t) \approx t \in I d V$.

If t contains at most n operation symbols then $\sigma^{\gamma_{n}}(t)=t$ by definition of the mapping $\sigma^{\gamma_{n}}$.

If t contains more than n operation symbols then $c(t) \geq n+1$ and $t \approx x_{1} \ldots x_{n+1} \in I d V$ because of $x_{1} \ldots x_{n+1} \approx y_{1} \ldots y_{n+1} \in I d V$. Since t contains more than n operation symbols, by definition of the mapping $\sigma^{\gamma_{n}}$, the term $\sigma^{\gamma_{n}}(t)$ contains at least n operation symbols and thus $c\left(\sigma^{\gamma_{n}}(t)\right) \geq n+1$. Using $x_{1} \ldots x_{n+1} \approx y_{1} \ldots y_{n+1} \in I d V$ we get $\sigma^{\gamma_{n}}(t) \approx$ $x_{1} \ldots x_{n+1} \in I d V$. Consequently, $\sigma^{\gamma_{n}}(t) \approx t \in I d V$.

This shows that $\sigma^{\gamma_{n}}(s) \approx s \approx t \approx \sigma^{\gamma_{n}}(t)$ holds in V for $s \approx t \in I d V$ and $\sigma \in H y p(2)$, i.e. V is γ_{n}-solid.

Corollary 1. TR and Z are the only γ_{1}-solid varieties of semigroups.
Proof. By Theorem 4, a variety V of semigroups is γ_{1}-solid iff $x_{1} x_{2} \approx$ $y_{1} y_{2} \in I d V$, i.e. $V \subseteq Z$. But $T R$ and Z are the only subvarieties of Z.

References

[1] Denecke, K., Koppitz, J., Essential variables in Hypersubstitutions, Algebra Universalis 46(2001), 443-454.
[2] Denecke, K., Lau, D., Pöschel, R., Schweigert, D., Hyperidentities, hyperequational classes, and clone congruences, Contributions to General Algebra 7, Verlag Hölder-Pichler-Tempsky, Wien 1991, 97-118.
[3] Denecke, K., Wismath, S.L., Hyperidentities and clones, Gordon and Breach Scientific Publisher, 2000.
[4] Graczýnska, E., Schweigert, D., Hypervarieties of a given type, Algebra Universalis 27(1990), 111-127.
[5] Polák, L., All solid varieties of semigroups, J. of Algebra 219 (1999), 421-436.
[6] Shtrakov, Sl., Denecke, K., Essential variables and separable sets in Universal Algebra, Multiple-Valued Logic in Eastern Europe, Multiple-Valued Logic 8(2002), no $2,165-181$.

Jörg Koppitz
Slavcho Shtrakov South-West-University Blagoevgrad
Faculty of Mathematics and Natural Sciences
2700 Blagoevgrad, Bulgaria
E-Mail: shtrakov@aix.swu.bg

Received by the editors: 26.05.2005 and final form in 22.07.2005.

