The endotopism spectrum of an equivalence

E. A. Toichkina

Taras Shevchenko National University of Luhansk, Ukraine

e.a.rom@mail.ru

Let X be an arbitrary nonempty set and $\rho \subseteq X \times X$. The ordered pair (φ, ψ) of transformations φ and ψ of a set X is called an endotopism [1] of ρ if for all $a, b \in X$ the condition $(a, b) \in \rho$ implies $(a \varphi, b \psi) \in \rho$. The set of all endotopisms of ρ is denoted by $\operatorname{Et}(\rho)$.

The endotopism $(\varphi, \psi) \in E t(\rho)$ is called a half-strong endotopism if for all $a, b \in X$ the condition $(a \varphi, b \psi) \in \rho$ implies the existence of preimages $a^{\prime} \in a \varphi \varphi^{-1}$ and $b^{\prime} \in b \psi \psi^{-1}$ such that $\left(a^{\prime}, b^{\prime}\right) \in \rho$. We denote the set of all half-strong endotopisms of ρ by $\operatorname{HEt}(\rho)$.

The endotopism $(\varphi, \psi) \in E t(\rho)$ is called a locally strong endotopism if for all $a, b \in X$ the condition $(a \varphi, b \psi) \in \rho$ implies that for every $a^{\prime} \in a \varphi \varphi^{-1}$ there exists $b^{\prime} \in b \psi \psi^{-1}$ such that $\left(a^{\prime}, b^{\prime}\right) \in \rho$ and analogously for all preimages of $b \psi$. By $\operatorname{LEt}(\rho)$ we denote the set of all locally strong endotopisms of ρ.

The endotopism $(\varphi, \psi) \in E t(\rho)$ is called a quasi-strong endotopism if for all $a, b \in X$ the condition $(a \varphi, b \psi) \in \rho$ implies that there exists $a^{\prime} \in a \varphi \varphi^{-1}$ such that for every $b^{\prime} \in b \psi \psi^{-1}$ we have $\left(a^{\prime}, b^{\prime}\right) \in \rho$ and analogously for a suitable preimage of $b \psi$. We denote the set of all quasi-strong endotopisms of ρ by $Q E t(\rho)$.

The endotopism $(\varphi, \psi) \in E t(\rho)$ is called a strong endotopism if for all $a, b \in X$ the condition $(a \varphi, b \psi) \in \rho$ implies $(a, b) \in \rho$. By $S E t(\rho)$ we denote the set of all strong endotopisms of ρ.

The ordered pair (φ, ψ) of permutations φ and ψ of a set X is called an autotopism of $\rho \subseteq X \times X$ if $(a, b) \in \rho$ iff $(a \varphi, b \psi) \in \rho$ for all $a, b \in X$. The set of all autotopisms of ρ we denote by $A t(\rho)$.

Note that for any $\rho \subseteq X \times X$, we have the following sequence of inclusions: $E t(\rho) \supseteq$ $H E t(\rho) \supseteq \operatorname{LEt}(\rho) \supseteq Q E t(\rho) \supseteq S E t(\rho) \supseteq \operatorname{At}(\rho)$. With this sequence we associate the respective cardinalities: $\operatorname{Etspec}(X, \rho)=(|E t(\rho)|,|H E t(\rho)|,|\operatorname{LEt}(\rho)|,|Q E t(\rho)|,|\operatorname{SEt}(\rho)|,|\operatorname{At}(\rho)|)$, which is called the endospectrum (or the endotopism spectrum) of ρ relative to its endotopisms.

We denote the set of all equivalence relations on a set X by $E q(X)$. Let $\alpha \in E q(X), \Im(X)$ be the symmetric semigroup on X and $S(X)$ be the symmetric group on X. By $B(X / \alpha)$ we denote the set of all bijections $\eta: X / \alpha \rightarrow X / \alpha$ such that $|A|=|A \eta|$ for all $A \in X / \alpha$.

Theorem. For any equivalence α on a finite set X, we have:
(i) $|E t(\alpha)|=\sum_{\tau^{*} \in \Im(X / \alpha)}\left(\prod_{A \in X / \alpha}\left|A \tau^{*}\right|^{|A|}\right)^{2}$;
(ii) $|\operatorname{LEt}(\alpha)|=\sum_{\tau^{*} \in \Im(X / \alpha)}\left(\prod_{A \in(X / \alpha) \tau^{*}}\left(|A|+\sum_{i=2}^{|M|} C_{|A|}^{i} \prod_{A^{\prime} \in A \tau^{*-1}}\left(i^{\left|A^{\prime}\right|}-C_{i}^{i-1}\left((i-1)^{\left|A^{\prime}\right|}-\right.\right.\right.\right.$ $(i-1))-i)))^{2}$, where $|M| \geq 2$ and $M \in A \tau_{\text {min }}^{*-1}=\left\{A^{\prime} \in A \tau^{*-1} \cup\{A\}:\left|\left|A^{\prime}\right| \leq|A|\right\}\right.$ be the class of a least cardinality;
(iii) $|S E t(\alpha)|=\sum_{\tau^{*} \in S(X / \alpha)}\left(\prod_{A \in X / \alpha}\left|A \tau^{*}\right|{ }^{|A|}\right)^{2}$;
(iv) $|Q E t(\alpha)|=|S E t(\alpha)|$;
(v) $|A t(\alpha)|=|B(X / \alpha)| \cdot\left(\prod_{A \in X / \alpha}|A|!\right)^{2}$.

A question of calculating $|H E t(\alpha)|$ for any equivalence $\alpha \in E q(X)$ is open.

1. Popov B. V. Semigroups of endomorphisms of μ-ary relations. Uchen. Zapiski LGPI im. A.I. Gertsena, 1965, 274, P. 184-201 (In Russian).
2. Clifford A.H., Preston G.B. The algebraic theory of semigroups, V.1. - M.: Mir, 1972, 506 p. (In Russian).
