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Abstract. General algebraic systems are able to formal-
ize problems of different branches of mathematics from the alge-
braic point of view by establishing the connectivity between them.
It has lots of applications in theoretical computer science, secure
communications etc. Combinatorial designs play significant role
in these areas. Steiner Triple Systems (STS) which are particular
case of Balanced Incomplete Block Designs (BIBD) from combina-
torics can be regarded as algebraic systems. Steiner quasigroups
(Squags) and Steiner loops (Sloops) are two well known algebraic
systems which are connected to STS. There is a one-to-one corre-
spondence between STS and finite Squags and finite Sloops. A new
algebraic system w.r.to a ternary operation P based on a Steiner
Triple System introduced in [3].

In this paper the abstraction and the generalization of the prop-
erties of the ternary operation defined in [3] has been made. A new
class of algebraic systems Steiner P -algebras has been introduced.
The one-to-one correspondence between STS on a linearly ordered
set and finite Steiner P -algebras has been established. Some iden-
tities have been proved.
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1. Preliminaries

In this section the basic definitions, properties and some results of com-
binatorial designs [4] and algebraic systems [1, 2, 3] have been given.

Definition 1.1. Let v, k, and λ be positive integers such that
v > k ≥ 2. A (v, k, λ) - balanced incomplete block design (BIBD) is a
pair (X, A) such that the following properties are satisfied:

1. X is a set of v elements called points,

2. A is a collection of subsets of X called blocks,

3. each block contains exactly k points, and

4. every pair of distinct points is contained in exactly λ blocks

Two basic properties of BIBD are as follows:

Theorem 1.2 ([4]). In a ( v, k, λ)-BIBD, every point occurs in exactly

r = λ(v−1)
k−1 blocks.

Theorem 1.3 ([4]). The number of blocks in a (v, k, λ)-BIBD is exactly

b = vr

k
= λ(v2

−v)
k2

−k
.

Definition 1.4. A Steiner Triple System (STS) of order v is a (v, 3, 1)
-BIBD. In other words a STS on the set X is a collection SX of three ele-
ments subsets of X called blocks such that, any pair of distinct elements
of X is contained in a unique block of SX .

Theorem 1.5 ([2]). If SX is a STS on a finite set X of order v, then

1. v ≡ 1, 3 mod 6

2. |SX | ≡ v(v−1)
6 .

Definition 1.6. A groupoid satisfying the following identities :

1. x · x = x

2. x · y = y · x

3. x · (x · y) = y

is called a Steiner quasigroup (Squag).

Theorem 1.7 ([2]). If < A, · > is a Squag define SA to be the set
of three element subsets {x, y, z} of A such that the product of any two
elements gives the third. Then SA is a STS on A.
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Definition 1.8 ([2]). A groupoid with a distinguished element
< A, ·, 1 > is called a Steiner loop (Sloop) if the following identities
hold :

1. x · x = 1

2. x · y = y · x

3. x · (x · y) = y

Theorem 1.9 ([2]). If < A, ·, 1 > is a Sloop and |A| ≥ 2 , define SA

to be the three element subsets of A\{1} such that the product of any two
distinct elements gives the third. Then SA is a STS on A \ {1}.

It is evident that any STS, SA on a set A enables to construct Squag
on the set A and Sloop on the set A ∪ {1} w.r.to the following binary
operation

1. x · y =

{

z if {x, y, z} ∈ SA,

x if x = y.

2. x · y =

{

z if {x, y, z} ∈ SA,

1 if x = y

for all x, y ∈ A, respectively. So, there is a one-to-one correspondence
between STS and finite Squags and Sloops.

The ternary operation P for a given STS on a finite linear order (l.o)
set A (see [3]) is given below.

Definition 1.10. Let A be a finite linear ordered set and SA be the STS
on A. Define the ternary operation P on A as follows:

1. P (x, y, z) = min{x, y, z} if {x, y, z} ∈ SA

2. P (x, y, z) = a where {x, z, b}, {y, b, a} ∈ SA for some elements
b, a ∈ A if {x, y, z} /∈ SA and x 6= z,

3. P (x, y, z) = a where {x, y, a} ∈ SA if x = z 6= y

4. P (x, y, z) = x if x = y = z.

Theorem 1.11 ([3]). Let “·” ’ be the binary operation and “P ” be the
ternary operation as defined in definition 1.6 and Definition 1.10 respec-
tively on a finite l.o set A for a given STS SA on A. Then

P (x, y, z) =

{

min{x, y, z} if {x, y, z} ∈ SA

y · (x · z) if {x, y, z} /∈ SA.
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Theorem 1.12 ([3]). Let A be a finite l.o set, SA be a STS on the given
set and P be the ternary operation w.r.to SA as defined in definition
1.10.The set S consists of all three element subsets {x, y, z} of A such
that

P (x, y, z) = min {x, y, z}.

Then S = SA.

2. Steiner P - algebra and Some Identities

In this section a new algebraic structure on a linear ordered set has been
defined. The connectivity between the STS on a l.o set and variety of fi-
nite algebraic structures has been established. Some important identities
have been proved.

Definition 2.1. A Steiner P - algebra < A, P > is an algebra on a l.o
set A with one ternary operation P satisfying the following properties for
all x, y, z ∈ A :

1. For any two distinct elements x, y there exists an element z 6= x 6= y
such that P (x, y, z) = min{x, y, z} irrespective of positional order of
x, y, z.

2. For x 6= z , P (x, y, z) = a for some elements b, a ∈ A such that
P (x, z, b) = min{x, z, b} and P (y, b, a) = min{y, b, a} irrespective of
positional order of x, z, b, y, a.

3. For x 6= y 6= z, P (x, y, z) = min{x, y, z} where for any two distinct
elements x, y the third element z satisfies the condition 1.

4. For x 6= y , P (x, y, x) = a where P (x, y, a) = min{x, y, a} irrespective
of positional order of x, y, a.

5. P (x, x, x) = x.

Proposition 2.2. The class of Steiner P -algebras is axiomatic.

Proof. Let K be the class of Steiner P -algebras. Let < A, P >∈ K
and φ(x, y, z) = (P (x, y, z) = min{x, y, z}). Then from the definition of
Steiner P -algebra it follows that the following formulas satisfy in A:

1. (x 6= y) → (∃z(z 6= x 6= y)(φ(x, y, z)∧φ(x, z, y)∧φ(y, x, z)∧φ(y, z, x)
∧φ(z, x, y) ∧ φ(z, y, x))).
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2. ((x 6= z) → (P (x, y, z) = a)) ↔ ((x 6= z) → (∃b(b 6= y 6= x 6=
z)(φ(x, z, b) ∧φ(x, b, z) ∧ φ(z, x, b) ∧ φ(z, b, x) ∧ φ(b, x, z) ∧ φ(b, z, x)))
∧((y 6= b) → (∃a(a 6= y 6= b)(φ(y, b, a) ∧ φ(y, a, b) ∧ φ(b, y, a)
∧φ(b, a, y) ∧ φ(a, y, b) ∧ φ(a, b, y)))).

3. ((x 6= y 6= z) → φ(x, y, z)) ↔ ((x 6= z) → (∃y(y 6= x 6= z)(φ(x, z, y)
∧φ(x, y, z) ∧ φ(z, x, y) ∧ φ(z, y, x) ∧ φ(y, x, z) ∧ φ(y, z, x))).

4. ((x 6= y) → (P (x, y, x) = a)) ↔ ((x 6= y) → (∃a(a 6= x 6= y)(φ(x, y, a)
∧φ(x, a, y) ∧ φ(y, x, a) ∧ φ(y, a, x) ∧ φ(a, x, y) ∧ φ(a, y, x))).

5. P (x, x, x) = x.

So K is said to be axiomatized by the set of above mentioned axioms
for K. Hence the class of Steiner P -algebras is axiomatic.

Example 2.3. Let A = {1, 2, 3, 4, 5, 6, 7} , the STS on A is
SA = {{1, 2, 4} {2, 3, 5} {3, 4, 6} {4, 5, 7} {1, 5, 6} {2, 6, 7} {1, 3, 7}} and
the ternary operation P is as defined in Definition 1.10. Then it is evident
that < A, P > is a Steiner P -algebra.

Proposition 2.4. For any two distinct elements x, y of a Steiner P -
algebra < A, P > there exists a unique third element z 6= x 6= y such
that P (x, y, z) = min{x, y, z}.

Proof. Let x 6= y and suppose there exist z, z′ 6= x 6= y such that
φ(x, y, z) = min{x, y, z} and φ(x, y, z′) = min{x, y, z′} hold. By the
axiom (3) of Proposition 2.2 it follows that

φ(x, y, z) ∧ φ(x, z, y) ∧ φ(y, x, z) ∧ φ(y, z, x) ∧ φ(z, x, y) ∧ φ(z, y, x)

and φ(x, y, z′) ∧ φ(x, z′, y) ∧ φ(y, x, z′) ∧ φ(y, z′, x) ∧ φ(z′, x, y) holds.
This implies that z = P (x, y, x) = z′ by (4) of Proposition 2.2.

Proposition 2.5. In a Steiner P -algebra < A, P > the following identity
holds: P (x, x, y) = y = P (y, x, x).

Proof. If x = y then the identity holds by (5) of the Definition 2.1.
Now suppose x 6= y and P (x, x, y) = a From (2) of Proposition 2.2 and
Proposition 2.4 it follows that
((x 6= y) → (∃!b(b 6= x 6= y)(φ(x, y, b) ∧ φ(x, b, y) ∧ φ(y, x, b) ∧ φ(y, b, x) ∧
φ(b, x, y)∧φ(b, y, x))))∧((x 6= b) → (∃!a(a 6= x 6= b)(φ(x, b, a)∧φ(x, a, b)∧
φ(b, x, a) ∧ φ(b, a, x) ∧ φ(a, x, b) ∧ φ(a, b, x))))
Now let denote A= ((x 6= y) → (∃!b(b 6= x 6= y)(φ(x, y, b) ∧ φ(x, b, y) ∧
φ(y, x, b) ∧ φ(y, b, x) ∧ φ(b, x, y) ∧ φ(b, y, x))))
and B= ((b 6= x) → (∃y(y 6= b 6= x)(φ(x, y, b) ∧ φ(x, b, y) ∧ φ(y, x, b) ∧
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φ(y, b, x) ∧ φ(b, x, y) ∧ φ(b, y, x)))).
So A and A → B hold. It follows B holds. So a = y (by the uniqueness
property) Hence P (x, x, y) = y. Similarly P (y, x, x) = y.

Proposition 2.6. In a Steiner P -algebra < A, P >the identity P (x, y, x) =
P (y, x, y) holds for all x, y ∈ A.

Proof. If x = y it follows from (5) of the Definition 2.1.
Now suppose x 6= y and P (x, y, x) = a. From (4) of the Proposition 2.2
and the Proposition 2.4 it follows that

A = ((x 6= y) → (∃!a(a 6= x 6= y)(φ(x, y, a) ∧ φ(x, a, y)∧

∧φ(y, x, a) ∧ φ(y, a, x) ∧ φ(a, x, y) ∧ φ(a, y, x))))

holds. This is equivalent to

B = ((y 6= x) → (∃!a(a 6= y 6= x)(φ(y, x, a) ∧ φ(y, a, x)∧

∧φ(x, y, a) ∧ φ(x, a, y) ∧ φ(a, y, x) ∧ φ(a, x, y)))).

So B holds in < A, P > which implies that P (y, x, y) = a .
Hence P (x, y, x) = P (y, x, y).

Proposition 2.7. In a Steiner P -algebra < A, P > the identity
P (x, y, z) = P (z, y, x) ∀ x, y, z ∈ A holds.

Proof. To prove this identity we have to consider the following two cases

(i) P (x, y, z) = min{x, y, z} for x 6= y 6= z,

(ii) P (x, y, z) = a for x 6= y 6= z; where a ∈ A and a /∈ {x, y, z}

Let us first consider case (i). From the axiom (3) of Proposition 2.2 it
follows that

A = ((x 6= z) → (∃y(y 6= x 6= z)(φ(x, z, y) ∧ φ(x, y, z)∧

∧φ(z, x, y) ∧ φ(z, y, x) ∧ φ(y, x, z) ∧ φ(y, z, x))))

holds. Let

B = ((z 6= x) → (∃y(y 6= z 6= x)(φ(z, x, y) ∧ φ(z, y, x)∧

∧φ(x, z, y) ∧ φ(x, y, z) ∧ φ(y, z, x) ∧ φ(y, x, z))))

So B is equivalent to A. This implies that B holds. Hence P (z, y, x) =
min{x, y, z} by (3) of Proposition 2.2.
Now let us consider case (ii). From (2) of Proposition 2.2 it follows that

((x 6= z) → (∃b(b 6= y 6= x 6= z)(φ(x, z, b) ∧ φ(x, b, z) ∧ φ(z, x, b)∧

∧φ(z, b, x) ∧ φ(b, x, z) ∧ φ(b, z, x))))
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This implies P (x, b, z) = min{x, b, z} for x 6= b 6= z. So P (x, b, z) =
P (z, b, x) ( by case (i) ) -(I). Hence from the assumption and (I) we get
the following

((z 6= b 6= x) → φ(z, b, x)) ∧ ((y 6= a 6= b) → φ(y, a, b))

This implies that P (z, y, x) = a (by (2) and (3) of Proposition 2.2). Hence
P (x, y, z) = P (z, y, x) ∀ x, y, z ∈ A.

Theorem 2.8. If < A, P > is a Steiner P -algebra , define SA to be
the set of three element subsets {x, y, z} of A such that P (x, y, z) =
min{x, y, z} irrespective of the positional order of x, y, z . Then SA is
a STS on A.

Proof. Let x 6= y 6= z and {x, y, z} ∈ SA. This implies

φ(x, y, z) ∧ φ(x, z, y) ∧ φ(y, x, z) ∧ φ(y, z, x) ∧ φ(z, x, y) ∧ φ(z, y, x)

holds in A i.e. P (x, y, z) = P (x, z, y) = P (y, x, z) = P (y, z, x) =
P (z, x, y) = P (z, y, x) = min{x, y, z}. From (3) of Proposition 2.2 and
Proposition 2.4 it follows that for any two distinct elements of three ele-
ment subsets {x, y, z} of SA the third element is the required element so
that the value under the operation P is min{x, y, z}.

Now let x = y 6= z and {x, y, z} ∈ SA. Hence

P (x, x, z) = P (x, z, x) = min{x, z}. (1)

It follows that z = min{x, z} (by Proposition 2.5). So z < x. By (1)
and (4) of Proposition 2.2 and by the Proposition 2.4 it follows that
P (x, z, x) = a for unique

a 6= x 6= z. (2)

So from (1) and (2) it follows that z = a which is a contradiction. Hence
z = x . So if any two are equal, all three are equal. Consequently for
any two distinct elements of A there is a unique third element (distinct
from the two) such that it gives the minimum of three irrespective of
the positional order of the elements under the operation P . Thus SA is
indeed a STS on A.

It is trivial to prove that a finite l.o set A w. r. to the operation
P as defined in Definition 1.10 for a given STS SA on A is a Steiner
P - algebra. From the theorem 2.8 it follows that the axiomatic class of
Steiner P -algebras exactly captures the Steiner Triple Systems.
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Proposition 2.9. In a finite Steiner P -algebra < A, P > the number
of disjoint blocks with each arbitrary but fixed block of the corresponding
STS is n = 6m2 − 8m + 2 and 6m2 − 4m respectively for |A| = v =
1 + 6m and 3 + 6m where m > 0.

Proof. Let < A, P > be a finite Steiner P -algebra. Then by Theorem 2.8
the set SA = {{x, y, z} such that P (x, y, z) = min{x, y, z}irrespective of
the positional order of x, y, z} be the corresponding STS on A. So, either
|A| = v = 1 + 6m -(i) or v = 3 + 6m -(ii) where m > 0. Let n denote the
number of disjoint blocks with each arbitrary but fixed block. By STS
property n = b − {3(r − 1) + 1} = b − 3r + 2 where b denote the total
number of blocks and r denote the number of blocks containing a fixed
element.
Now for case (i)

r =
v(v − 1)3

6v
=

v − 1

2
=

1 + 6m − 1

2
= 3m

and b = v(v−1)
6 = (1+6m)6m

6 = 6m2 + m.
So n = 6m2 + m − 3(3m) + 2 = 6m2 − 8m + 2
and for case (ii)

r =
3 + 6m − 1

2
= 1 + 3m

and b = (3+6m)(2+6m)
6 = (1 + 2m)(1 + 3m) = 6m2 + 5m + 1.

So n = 6m2 + 5m − 1 − 3(1 + 3m) + 3 = 6m2 + 5m − 3 − 9m + 3 =
6m2 − 4m.

Theorem 2.10. In a Steiner P - algebra < A, P > if the integer n from
the Proposition 2.9 is equal to zero (i.e n = 0) then P (x, y, z) is equal
irrespective of the positional order of x, y, z and if n = 2 then P (x, y, z) 6=
P (x, z, y) 6= P (y, x, z) for all distinct x, y, z ∈ A such that P (x, y, z) 6=
min{x, y, z}.

Proof. Let < A, P > be a finite Steiner P -algebra. Then by Theorem 2.8
it follows that the set SA = {{x, y, z} : x 6= y 6= z and P (x, y, z) =
min{x, y, z} irrespective of the positional order of x, y, z} is the corre-
sponding STS on A. Now suppose n = 0. This implies that the intersec-
tion of any two elements of SA (i.e. intersection of any two blocks of the
corresponding STS of the Steiner P-algebra)is non empty. Let x 6= y 6= z
and P (x, y, z) 6= min{x, y, z}. It implies that {x, y, z} /∈ SA.
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If possible let P (x, y, z) = a and P (x, z, y) = a′.
So by (2) of Proposition 2.2 follows that

((x 6= z) → (∃b(b 6= y 6= x 6= z)(φ(x, z, b) ∧ φ(x, b, z)∧

∧φ(z, x, b) ∧ φ(z, b, x) ∧ φ(b, x, z) ∧ φ(b, z, x))))∧

∧((y 6= b) → (∃a(a 6= y 6= b)(φ(y, b, a) ∧ φ(y, a, b)∧

∧φ(b, y, a) ∧ φ(b, a, y) ∧ φ(a, y, b) ∧ φ(a, b, y)))).

This implies that {x, z, b} and {y, b, a} ∈ SA.
Similarly , ∃b′(b′ 6= z 6= x 6= y) such that {x, y, b′} and {z, b′, a′} ∈ SA.

So {x, z, b}, {x, y, b′} ∈ SA and {x, z, b} ∩ {x, y, b′} 6= ∅. Since x 6= y 6= z
and by the property of STS the intersection of any two blocks is atmost an
one element set. So b 6= b′. By the assumption {y, b, a} ∩ {z, b′, a′} 6= ∅.
Since y 6= z 6= b′ 6= b, so a = a′. Hence P (x, y, z) = P (x, z, y).

Similarly , P (x, y, z) = P (y, x, z). Hence by Proposition 2.7 we get
that for all distinct x, y, z ∈ A the value of P (x, y, z) is same irrespective
of the positional order of the elements.

Let us now consider the case n = 2.
Let P (x, y, z) = a and P (x, z, y) = a′, then as above we get {x, z, b},

{y, b, a} ∈ SA and {x, y, b′}, {z, b′, a′} ∈ SA for some b 6= b′ ∈ A. Now
suppose a = a′. Since n = 2 , so |A| = v = 9 (by Proposition 2.9) and by
the property of STS for any arbitrary but fixed block bi there exist two
blocks viz. b1, b2 such that bi ∩ bk = ∅ for k = 1, 2. Now if possible let
b1 ∩ b2 6= ∅. By the property of STS the intersection is a single element
set. Let w ∈ b1 ∩ b2 . By Theorem 1.2 w belongs to r = 4 blocks of SA.
Now, w belongs to 3 blocks each of which contains also either one of the
element of bi. So w belongs to 5 blocks since bi ∩ bk = ∅ for k = 1, 2.
It leads to a contradiction to the fact that each element of A belongs to
r = 4 blocks of SA. Hence b1∩ b2 = ∅. It follows that bi∪ b1∪ b2 = A–(I).
Let bi = {x, y, b′}, then z, a ∈ A \ bi and they can’t belong to the same
bk, k = 1, 2. So let z ∈ b1 and a ∈ b2. It follows that b /∈ b1 and b /∈ b2

which contradicts (I). So a 6= a′. Hence P (x, y, z) 6= P (x, z, y).
Similarly we can prove the other inequalities of the theorem.

Conjecture 2.11. If the integer n from the Proposition 2.9 is positive
then P (x, y, z) 6= P (x, z, y) 6= P (y, x, z) for all distinct x, y, z ∈ A such
that P (x, y, z) 6= min{x, y, z}.

Theorem 2.12. In a Steiner P - algebra < A, P > for all distinct
x, y, z ∈ A such that P (x, y, z) 6= min{x, y, z} the following identities
hold:

1. P (x, P (x, y, z), z) = y,
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2. P (P (x, y, z), x, y) = z,

3. P (P (x, y, z), z, y) = x.

Proof. The identities follow from the Proposition 2.2 and Proposition 2.4
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