Color-detectors of hypergraphs

I. V. Protasov, O. I. Protasova

Communicated by V. M. Usenko

Dedicated to Yu.A. Drozd on the occasion of his 60th birthday
Abstract. Let X be a set of cardinality k, \mathcal{F} be a family of subsets of X. We say that a cardinal $\lambda, \lambda<k$, is a color-detector of the hypergraph $H=(X, \mathcal{F})$ if $\operatorname{card} \chi(X) \leq \lambda$ for every coloring χ : $X \rightarrow k$ such that card $\chi(F) \leq \lambda$ for every $F \in \mathcal{F}$. We show that the color-detectors of H are tightly connected with the covering number $\operatorname{cov}(H)=\sup \{\alpha$: any opoints of X are contained in some $F \in$ $\mathcal{F}\}$. In some cases we determine all of the color-detectors of H and their asymptotic counterparts. We put also some open questions.

Let X be a set, \mathcal{F} be a family of subsets of X. The pair $H=(X, \mathcal{F})$ is called a hypergraph with the set of vertices X and the set of edges \mathcal{F}. We suppose that $\bigcup \mathcal{F}=X$.

Let λ be a cardinal such that $0<\lambda<k=\operatorname{card} X$. A coloring $\chi: X \rightarrow k$ is called λ-admissible if card $\chi(F) \leq \lambda$ for every $F \in \mathcal{F}$. We put

$$
æ(H, \lambda)=\sup \{\operatorname{card} \chi(X): \chi \text { is a } \lambda-\text { admissible coloring of } X\} .
$$

Clearly, $æ(H, \lambda) \geq \lambda$. If $æ(H, \lambda)=\lambda$, we say that λ is a detector of H. If λ is a detector of H, then there exists $F \in \mathcal{F}$ such that card $F>\lambda$ (because, otherwise, a bijective coloring $\chi: X \rightarrow k$ is λ-admissible and $\chi(X)=k>\lambda)$.

Proposition 1. A cardinal λ is a detector of H if and only if, for every surjective coloring $\chi: X \rightarrow \lambda^{+}$, were λ^{+}is the cardinal-successor of λ, there exists $F \in \mathcal{F}$ such that card $\chi(F)=\lambda^{+}$.

2000 Mathematics Subject Classification: 05C15.
Key words and phrases: hypergraph, color-detector, covering number.

Proof. Let $æ(H, \lambda)=\lambda$ and let $\chi: X \rightarrow \lambda^{+}$be a surjective coloring. Then χ is not λ-admissible, so there exists $F \in \mathcal{F}$ such that card $F=\lambda^{+}$.

Assume that $æ(H, \lambda)>\lambda$ and choose a λ-admissible coloring χ : $X \rightarrow k$ such that card $\chi(X)>\lambda$. Identifying some colors, we get a surjective λ-admissible coloring $\chi^{\prime}: X \rightarrow \lambda^{+}$, so $\operatorname{card} \chi^{\prime}(F) \leq \lambda$ for every $F \in \mathcal{F}$.

We define the covering number of H as

$$
\begin{aligned}
& \operatorname{cov}(H)=\sup \{\gamma: \text { for every } Y \subseteq X \text { with card } Y \leq \gamma \\
& \text { there exists } F \in \mathcal{F} \text { such that } Y \subseteq F\} .
\end{aligned}
$$

Proposition 2. If $\operatorname{cov}(H) \geq \lambda^{+}$, then λ is a detector of H.
Proof. Let $\chi: X \rightarrow \lambda^{+}$be a surjective coloring. Choose $Y \subseteq X$ such that card $Y=\operatorname{card} \chi(Y)=\lambda^{+}$. Since $\operatorname{cov}(H) \geq \lambda^{+}$, we can choose $F \in \mathcal{F}$ such that $Y \subseteq F$. Then $\operatorname{card} \chi(F)=\lambda^{+}$. By Proposition 1, λ is a detector of H.

Proposition 3. If a natural number m is a detector of H, then cov $(H) \geq m$.

Proof. We fix an arbitrary m-subset $Y=\left\{y_{0}, \ldots, y_{m-1}\right\}$ of X and put $\chi\left(y_{i}\right)=i$ and $\chi(x)=m$ for every $x \in X \backslash Y$. Since m is a detector, by Proposition 1, there exists $F \in \mathcal{F}$ such that $\operatorname{card} \chi(F)=m+1$. It follows that $Y \subseteq F$, so $\operatorname{cov}(H) \geq m$.

Proposition 4. If a natural number m is a detector of H and $m^{\prime}<m$, then m^{\prime} is a detector of H.

Proof. Assume, otherwise, and fix a surjective coloring $\chi: X \rightarrow m^{\prime}+1$ such that card $\chi(F) \leq m^{\prime}$ for every $F \in \mathcal{F}$ (see Proposition 1). Since $m^{\prime}+1<k$, there exist two elements $a, b \in X$ such that $\chi(a)=\chi(b)$. We define the new coloring $\chi^{\prime}: X \rightarrow m^{\prime}+2$ such that $\chi^{\prime}(x)=\chi(x)$ for every $x \in X \backslash\{a\}$, and $\chi^{\prime}(a)=m^{\prime}+1$. Then $\operatorname{card} \chi^{\prime}(F) \leq m^{\prime}+1$ for every $F \in \mathcal{F}$, but card $\chi^{\prime}(X)=m^{\prime}+2$, so $m^{\prime}+1$ is not a detector of H. Repeating the arguments, we conclude that m is not a detector of H, whence a contradiction.

The following example shows that the finiteness assumption for m can not be omitted in Propositions 3 and 4.

Example 1. Let Y, Z be disjoint infinite sets, card $Y=k$, card $Z=\lambda$ and $\lambda<k$. We put $X=Y \bigcup Z$ and $F_{z}=Y \bigcup\{z\}$ for every $z \in Z$. Then we consider the hypergraph $H=(X, \mathcal{F})$, where $\mathcal{F}=\left\{F_{z}: z \in Z\right\}$.

Clearly, cov $(H)=1, \lambda$ is a detector of H, but every cardinal λ^{\prime} such that $1<\lambda^{\prime}<\lambda$ is not a detector of H.

For every hypergraph $H=(X, \mathcal{F})$, we consider the $\operatorname{graph} \Gamma(H)$ of intersections of H with the set of vertices X and the set of edges defined by the rule: $\left(x_{1}, x_{2}\right) \in X \times X$ is an edge if and only if $x_{1} \neq x_{2}$ and there exist $F_{1}, F_{2} \in \mathcal{F}$ such that $x_{1} \in F_{1}, x_{2} \in F_{2}$ and $F_{1} \cap F_{2} \neq \emptyset$.

Proposition 5. For every hypergraph $H=(X, \mathcal{F}), 1$ is a detector of H if and only if the graph $\Gamma(H)$ is connected.

Proof. Assume that $\Gamma(H)$ is connected and take an arbitrary coloring $\chi: X \rightarrow k$ such that card $\chi(F)=1$ for every $F \in \mathcal{F}$. Given any $x, y \in X$, we choose a path $x_{1}, x_{2}, \ldots, x_{n}$ in $\Gamma(H)$ such that $x=x_{1}, y=x_{n}$. Then $\chi\left(x_{1}\right)=\chi\left(x_{2}\right)=\ldots=\chi\left(x_{n}\right)$, so $\chi(x)=\chi(y)$.

If $\Gamma(H)$ is not connected, we take a connected component Y of $\Gamma(H)$ and, for every $x \in X$, we put

$$
\chi(x)=\left\{\begin{aligned}
0, & \text { if } x \in Y ; \\
1, & \text { if } x \in X \backslash Y ;
\end{aligned}\right.
$$

Then the coloring χ is 1 -admissible, but $\operatorname{card} \chi(X)>1$.
Proposition 6. If $H=(X, \mathcal{F})$ is a graph and card $X>1$, then the only possible detector of H is 1 , and 1 is a detector of H if and only if H is connected.

Proof. We fix a bijection $\chi: X \rightarrow k$. Since card $\chi(F)=2$ for every $F \in \mathcal{F}, \chi$ is λ-admissible for every $\lambda \geq 2$. It follows that if $1<\lambda<k$, then λ is not a detector of H. On the other hand, by Proposition 5, 1 is a detector of H if and only if $\Gamma(H)$ is connected. It is easy to see that $\Gamma(H)$ is connected if and only if H is connected.

Let $\Gamma=(V, E)$ be a connected graph with the set of vertices V and the set of edges E. For any $u, v \in V$, we denote by $d(u, v)$ the length of a shortest path between u and v. Given any $u \in V, r \in \mathbb{N}$, we put $B_{d}(u, r)=\{v \in V: d(u, v) \leq r\}$. Let \mathcal{B} be the family of all unit balls in Γ. Call the hypergraph $H=(V, \mathcal{B})$ to be the ball hypergraph of Γ. By Proposition 5, 1 is a detector of H.

Problem 1. Given a natural number $n>1$, characterize the class τ_{n} of connected graphs such that $\Gamma \in \tau_{n}$ if and only if n is a detector of the ball hypergraph of Γ.

For every natural number $n>1$, we denote by \mathcal{C}_{n} the class of all connected graphs such that $\Gamma \in \mathcal{C}_{n}$ if and only if $V(\Gamma) \geq n+1$ and any $\leq n$ vertices of Γ are contained in some unit ball in Γ. Note that \mathcal{C}_{2} is the class of graphs of diameter ≤ 2, where $\operatorname{diam} \Gamma=\sup \{d(u, v): u, v \in V\}$. By Propositions 2 and 3, we have

$$
\mathcal{C}_{2} \supseteq \tau_{2} \supseteq \mathcal{C}_{3} \supseteq \tau_{3} \supseteq \ldots
$$

The next two examples show that $\mathcal{C}_{2} \supset \tau_{2}$ and $\mathcal{C}_{2 n-1} \supset \tau_{2 n-1}$ for every $n \geq 2$.

Example 2. We consider a pentagone Γ with the set of vertices $\left\{a_{1}, a_{2}\right.$, $\left.a_{3}, a_{4}, a_{5}\right\}$ and the set of edges $\left\{\left(a_{1}, a_{2}\right),\left(a_{2}, a_{3}\right),\left(a_{3}, a_{4}\right),\left(a_{4}, a_{5}\right),\left(a_{5}, a_{1}\right)\right\}$. Since diam $\Gamma=2$, we have $\Gamma \in \mathcal{C}_{2}$. On the other hand, a coloring χ, defined by the rule

$$
\chi\left(a_{1}\right)=1, \chi\left(a_{2}\right)=2, \chi\left(a_{3}\right)=2, \chi\left(a_{4}\right)=3, \chi\left(a_{5}\right)=2
$$

is 2-admissible, so $\Gamma \notin \tau_{2}$.
Example 3. Let n be a natural number $>1, A=\left\{a_{1}, \ldots, a_{n}\right\}, B=$ $\left\{b_{1}, \ldots, b_{n}\right\}$ be disjoint sets. We consider the graph Γ with the set of vertices $V=A \bigcup B$ and the set of edges

$$
E=(A \times B) \backslash\left\{\left(a_{i}, b_{i}\right): i \in\{1, \ldots, n\}\right\}
$$

Let V^{\prime} be a subset of V such that card $V^{\prime} \leq 2 n-1$. Then there exists $i \in\{1, \ldots, n\}$ such that either $a_{i} \notin V^{\prime}$ or $b_{i} \notin V^{\prime}$. If $a_{i} \notin V^{\prime}$, then $V^{\prime} \subseteq B\left(b_{i}, 1\right)$. If $b_{i} \notin V^{\prime}$, then $V^{\prime} \subseteq B\left(a_{i}, 1\right)$. Hence, $\Gamma \in \mathcal{C}_{2 n-1}$. On the other hand, a coloring χ, defined by the rule

$$
\chi\left(a_{1}\right)=1, \ldots, \chi\left(a_{n}\right)=n, \chi\left(b_{1}\right)=n+1, \ldots, \chi\left(b_{n}\right)=2 n
$$

is $(2 n-1)$-admissible, so $\Gamma \notin \tau_{2 n-1}$.
Question 1. Is $\mathcal{C}_{2 n} \supset \tau_{2 n}$ for every $n \geq 2$?
Question 2. Is $\tau_{n} \supset \mathcal{C}_{n+1}$ for every $n \geq 2$?
Proposition 7. Let G be a group with the unit e, $Y \subseteq G, e \in Y$. Then 1 is a detector of the hypergraph $G_{Y}=(G,\{g Y: g \in G\})$ if and only if $G=\langle Y\rangle$, where $\langle Y\rangle$ is the smallest subgroup of G containing Y.

Proof. Let Γ be the intersection graph of G_{Y}. In view of Proposition 5, it suffices to show that Γ is connected if and only if $G=<Y>$.

Assume that Γ is connected and let g be an arbitrary element of G. Then there exist the elements x_{1}, \ldots, x_{n} of G such that $x_{1}=e, x_{n}=g$ and $x_{i} Y \bigcap x_{i+1} Y \neq \emptyset$ for every $i \in\{1, \ldots, n-1\}$. It follows that $x_{1} \in$ $Y Y^{-1}, x_{2} \in Y Y^{-1} Y Y^{-1}, \ldots, x_{n} \in\left(Y Y^{-1}\right)^{n}$, so $g \in<Y>$.

Assume that $G=<Y>$ and let g be an arbitrary element of G. It suffices to show that the vertices e and g of Γ are connected. Let $g=y_{1}^{i_{1}} y_{2}^{i_{2}} \ldots y_{n}^{i_{n}}$, where $i_{1}, \ldots, i_{n} \in\{ \pm 1\}$. We put $x_{0}=e, x_{1}=y_{1}^{i_{1}}, x_{k+1}=$ $x_{k} y_{k+1}^{i_{k+1}}, k \in\{1, \ldots, n-1\}$. Since either $x_{k+1} \in x_{k} Y$ or $x_{k} \in x_{k+1} Y$, then x_{k}, x_{k+1} are incident in Γ.

Problem 2. Let G be a group, $Y \subseteq G, e \in Y$ and let n be a natural number. Find necessary and sufficient conditions on Y under which n is a detector of G_{Y} ?

Proposition 8. Let V be a vector space over some field F, γ be a cardinal such that $1 \leq \gamma<\operatorname{dim} V, A(V, \gamma)$ be the family of all γ-dimensional affine subspaces of V. Let $H(V, \gamma)$ be the hypergraph $(V, A(V, \gamma))$ and let λ be a cardinal such that $\lambda \leq \operatorname{dim} V$ if $\operatorname{dim} V$ is finite and $\lambda<\operatorname{dim} V$ if V is infinite. If γ is finite, then λ is a detector of $H(V, \gamma)$ if and only if $\lambda \leq \gamma$. If γ is infinite, then λ is a detector of $H(V, \gamma)$ if and only if $\lambda<\gamma$.

Proof. If γ is finite, then $\operatorname{cov}(H(V, \gamma))=\gamma+1$. If $\lambda \leq \gamma$, by Proposition $2, \lambda$ is a detector of $H(V, \gamma)$. If γ is infinite, then $\operatorname{cov}(H(V, \gamma))=\gamma$. If $\lambda<\gamma$, by Proposition $2, \lambda$ is a detector of $H(V, \gamma)$.

Let $\operatorname{dim} V=\delta$. We fix some basis $\left\{v_{\alpha}: \alpha<\delta\right\}$ of V and put $\chi\left(v_{\alpha}\right)=\alpha$ and $\chi(v)=\delta$ for every $v \in V \backslash\left\{v_{\alpha}: \alpha<\delta\right\}$. If γ is finite, then \mid card $\chi(S) \mid \leq \gamma+1$ for every $S \in A(V, \gamma)$. Hence, if $\lambda>\gamma$, then λ is not a detector of $H(V, \gamma)$. If γ is infinite, then $|\operatorname{card} \chi(S)| \leq \gamma$ for every $S \in A(V, \gamma)$. Hence, if $\lambda \geq \gamma$, then λ is not a detector of $H(V, \gamma)$.

Problem 3. Detect $\propto(H(V, \gamma), \lambda)$ for every vector space V and any cardinals γ, λ.

For example, if n, m are natural numbers, then

$$
æ\left(H\left(\mathbb{R}^{n}, 1\right), m\right)=\left\{\begin{array}{r}
1, \text { if } m=1 \\
n+1, \text { if } m=2 \\
2^{\aleph_{0}}, \text { if } m \geq 3
\end{array}\right.
$$

A ball structure is a triple $\mathcal{B}=(X, P, B)$, where X, P are non-empty sets and, for all $x \in X$ and $\alpha \in P, B(x, \alpha)$ is a subset of X which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X, \alpha \in P$. The set X is called the support of \mathcal{B}, P is called the set of radiuses.

Given any $x \in X, A \subseteq X, \alpha \in P$, we put

$$
B^{*}(x, \alpha)=\{y \in X: x \in B(y, \alpha)\}, \quad B(A, \alpha)=\bigcup_{a \in A} B(a, \alpha)
$$

A ball structure \mathcal{B} is called a ballean if

- for any $\alpha, \beta \in P$, there exist $\alpha^{\prime}, \beta^{\prime} \in P$ such that, for every $x \in X$,

$$
B(x, \alpha) \subseteq B^{*}\left(x, \alpha^{\prime}\right), \quad B^{*}(x, \beta) \subseteq B\left(x, \beta^{\prime}\right)
$$

- for any $\alpha, \beta \in P$ there exists $\gamma \in P$ such that, for every $x \in X$,

$$
B(B(x, \alpha), \beta) \subseteq B(x, \gamma)
$$

- for any $x, y \in X$ there exists $\alpha \in P$ such that $y \in B(x, \alpha)$.

We note that the balleans arouse independently in asymptotic topology [2] and in combinatorics [3].

Let $\mathcal{B}=(X, P, B)$ be a ballean. A subset $A \subseteq X$ is called bounded if there exist $x \in X, \alpha \in P$ such that $A \subseteq B(x, \alpha)$.

Let Y be an arbitrary set, $f: X \rightarrow Y$. We define the asymptotic cardinality of $f(X)$ as
ascard $f(X)=\min \{\operatorname{card} f(X \backslash V): V$ is a bounded subset of $X\}$.
If $Y=X$ and f is the indentity mapping, we write ascard X instead of ascard id X.

Let $H=(X, \mathcal{F})$ be a hypergraph such that every subset $F \in \mathcal{F}$ is bounded in \mathcal{B}, λ be a cardinal, $\lambda<\operatorname{ascard} X$. A coloring $\chi: X \rightarrow$ ascard X is called asymptotically λ-admissible, if ascard $\chi(F) \leq \lambda$ for every $F \in \mathcal{F}$. We put

$$
æ_{a s}(H, \lambda)=\sup \{\text { ascard } \chi(X): \chi \text { is asymptotically } \lambda-\text { admissible }\}
$$

and say that λ is an asymptotic detector of H if $æ_{a s}(H, \lambda)=\lambda$.
We define a graph $A \Gamma(H)$ of asymptotic intersections of hypergraph $H=(X, \mathcal{F})$ as a graph with the set of vertices \mathcal{F} and the set of edges $\left\{\left(F, F^{\prime}\right): F, F^{\prime} \in \mathcal{F}, F \neq F^{\prime}\right.$ and $F \bigcap F^{\prime}$ is unbounded $\}$.

Proposition 9. Let $\mathcal{B}=(X, P, B)$ be a ballean such that X is a union of some family $\left\{B_{n}: n \in \omega\right\}$ of bounded subsets. Let $\mathcal{F}=\left\{F_{n}: n \in \omega\right\}$ be a family of unbounded subset of X. Then 1 is an asymptotic detector of $H=(X, \mathcal{F})$ if and only if there exists a finite subset $\mathcal{F}^{\prime} \subset \mathcal{F}$ such that $G \backslash \bigcup \mathcal{F}^{\prime}$ is bounded and $A \Gamma(H)$ is connected.

Proof. Assume that 1 is an asymptotic detector of H, but $X \backslash \bigcup \mathcal{F}^{\prime}$ is unbounded for every finite subset $\mathcal{F}^{\prime} \subset \mathcal{F}$. Then we can choose an injective sequence $\left(x_{n}\right)_{n \in \omega}$ in X such that

$$
x_{n} \in F_{n} \backslash\left(B_{0} \bigcup \ldots \bigcup B_{n} \bigcup F_{0} \bigcup \ldots \bigcup F_{n-1}\right)
$$

We put $\chi\left(x_{n}\right)=1$ for every $n \in \omega$, and $\chi(x)=0$ if $x \neq\left\{x_{n}: n \in \omega\right\}$. Clearly, the coloring χ is asymptotically 1-admissible, but ascard $\chi(X)=$ 2. Hence, $X=F_{0} \bigcup \ldots \bigcup F_{n} \bigcup V$ for some $n \in \omega$ and some bounded subset V. Assume that $A \Gamma(H)$ is not connected and let C be a connected component of $A \Gamma(H)$. Put $X_{0}=V \bigcup\left\{F_{i}: F_{i} \in C\right\}, X_{1}=X \backslash X_{0}$, and let χ be the coloring of X, defined by the partition $X=X_{0} \bigcup X_{1}$. If $F \in \mathcal{F}$, then either $F \bigcap X_{0}$ is bounded or $F \bigcap X_{1}$ is bounded, so χ is 1 -asymptotically admissible, but ascard $\chi(X)=2$.

Assume that $X \backslash\left\{F_{0}, \ldots, F_{n}\right\}$ is bounded for some $n \in \omega$ and $A \Gamma(H)$ is connected, but 1 is not an asymptotical detector/ of H. Then there exist an asymptotically 1 -admissible coloring $\chi: X \rightarrow\{0,1\}$ and $i, j \in$ $\{0, \ldots, n\}, i \neq j$ such that $\left.\chi\right|_{F_{i} \backslash V} \equiv 0,\left.\chi\right|_{F_{j} \backslash V} \equiv 1$ for some bounded subset V of G. Then F_{i}, F_{j} are not distinct connected components of $A \Gamma(H)$, so $A \Gamma(H)$ is not connected.

Let $\mathcal{B}=(X, P, B)$ be a ballean, $f: X \rightarrow \mathbb{R}, Y \subseteq X$. We say that $r \in \mathbb{R}$ is a limit of $f(Y)$ with respect to \mathcal{B} if r is the limit of the filter with the base $\{f(Y \backslash V): V$ is bounded subset of $X\}$. The next definition is inspired by [2]. A hypergraph $H=(X, \mathcal{F})$ is called limit-detecting if, given $f: X \rightarrow \mathbb{R}, f(X)$ has a limit provided that every $f(F), F \in \mathcal{F}$ has a limit.

Proposition 10. Let $\mathcal{B}=(X, P, B)$ be a ballean, \mathcal{F} be a family of unbounded subsets of X. If $H=(X, \mathcal{F})$ is limit-detecting, then 1 is an asymptotic detector of H.

Proof. Assume that H is limit detecting, but 1 is not an asymptotic detector of H. Then there exist an asymptotically 1 -admissible coloring $\chi: X \rightarrow$ ascard X, the ordinals $\alpha, \beta, \alpha<\beta<\operatorname{ascard} X$ and $F, F^{\prime} \in \mathcal{F}$ such that

$$
\left.\chi\right|_{F \backslash V}=\alpha,\left.\chi\right|_{F^{\prime} \backslash V}=\beta
$$

for some bounded subset V of X. We consider a mapping $f: X \rightarrow\{0,1\}$, defined by the rule $f(x)=0$ if $x \in \chi^{-1}(\alpha), f(x)=1$ if $x \notin \chi^{-1}(\alpha)$. Then $f(Y)$ has a limit for eyery $Y \in \mathcal{F}$, but $f(X)$ has not a limit.

Proposition 11. Let $\mathcal{B}=(X, P, B)$ be a ballean, \mathcal{F} be a family of unbounded subsets of X such that $X \backslash \bigcup \mathcal{F}^{\prime}$ is bounded for some finite subset $\mathcal{F}^{\prime} \subseteq \mathcal{F}$. If 1 is an asymptotic detector of H, then H is limit-detecting.

Proof. Let $\mathcal{F}^{\prime}=\left\{F_{0}, \ldots, F_{n}\right\}$. Assume that 1 is a detector of H, but H is not limit-detecting. Then there exists a mapping $f: X \rightarrow \mathbb{R}$ such that every subset $f\left(F_{i}\right)$ has some limit r_{i} with respect to \mathcal{B}, but $f(X)$ has no limit. We may suppose that r_{0}, \ldots, r_{m} are all distinct numbers from $\left\{r_{0}, \ldots, r_{n}\right\}$. Clearly, $m>1$. Choose $\varepsilon>0$ such that

$$
\left(r_{0}-\varepsilon, r_{1}+\varepsilon\right) \bigcap\left(r_{i}-\varepsilon, r_{i}+\varepsilon\right)=\emptyset
$$

for every $i \in\{1, . ., n\}$. Put $\chi(x)=0$ if $f(x) \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)$, and $\chi(x)=1$ otherwise. Clearly, χ is an asymptotically 1-admissible, but ascard $\chi(X)=m>1$, a contradiction.

Question 3. Let $\mathcal{B}=(X, P, B)$ be a ballean, \mathcal{F} be a family of unbounded subsets of $X, H=(X, \mathcal{F})$. Let 1 is an asymptotic detector of H. Is H limit detecting?

References

[1] T.Banakh, S.Pidkuyko. A game characterization of limit-detecting sequences in locally compact G spaces, Matem. Stud. (to appear)
[2] A.Dranishnikov. Asymptotic topology, Russian Math. Survey, 55 (2000), 71-116
[3] I.Protasov, T.Banakh, Ball Structures and Colorings of Groups and Graphs , Mat. Stud. Monogr. Ser., V.11, 2003.

Contact information

I. V. Protasov,
O. I. Protasova

Department of Cybernetics, Kyiv University, Volodimirska 64, Kyiv GSP, Ukraine E-Mail: protasov@unicyb.kiev.ua

Received by the editors: 18.10 .2004
and final form in 24.03.2005.

