Subsets of defect 3 in elementary Abelian 2-groups

B. V. Novikov, L. Yu. Polyakova

1. Introduction

It is well-known [1] that linear codes over a two-element field are precisely subgroups of an elementary Abelian 2-group G. It is naturally to consider subsets in G which are close to subgroups, as codes which are close to linear ones. In this connection in [3] the notion of a defect of a subset of a group G has been introduced as a measure of a deviation from a subgroup (so that a subset has the defect 0 only if it is a subgroup).

The subsets of defect 1 and 2 are described in [3]. In this description so called standard subsets play a leading role (see definition in section 2): all subsets of defect 1 are standard, and among subsets of defect 2 there is only one non-standard. In this article we show, that all subsets of defect 3 containing not less than 12 elements, are standard, and we describe all non-standard ones.

One can suppose that this situation is kept in the general case: large subsets of the fixed defect are standard. However now we do not know, whether this assumption is true.

2. Properties of the defect

Everywhere further G denotes a finite elementary Abelian 2-group, T its subset containing the identity, $|T|$ number of elements in $T,\langle T\rangle$ the subgroup of G, generated by T. Besides for any element $a \in T \backslash 1$ we put $T_{a}=T \backslash a T$.
A defect of a subset T is a number $\operatorname{def} T=\max _{a \in T}\left|T_{a}\right|$.
If H is a subgroup of G and $T \subset H$ then $\operatorname{def} T \leq|H \backslash T|$. In particular, putting $H=\langle T\rangle$, we get inequality:

$$
|T|+\operatorname{def} T \leq|\langle T\rangle|
$$

We call T standard, if $|T|+\operatorname{def} T=|\langle T\rangle|$.
For example, if F is a subgroup of G, H is a subgroup of F and $T=(F \backslash H) \cup 1$ then T is standard and $\operatorname{def} T=|H|-1$. Subsets of the form $T=(F \backslash H) \cup 1$ will be called strictly standard.

Obviously, subsets of defect 0 are exactly subgroups. The following results for defect 1 and 2 have been obtained in [3]:

Theorem 1. Each subset of defect 1 is of the form $T=H \backslash a$, where H is a subgroup of $G, a \in H$.

Theorem 2. Let def $T=2$. Then either T is standard or $|T|=4$ and $|\langle T\rangle|=8($ so $T \backslash 1$ is a basis of $\langle T\rangle)$.

Thus, subsets of defect 1 are strictly standard, and subsets of defect 2 , except the single one in essence, are standard (but are not strictly standard).

In [3] the following result also has been received: if a, b, c are different non-identity elements of G then $G \backslash\{a, b, c\}$ has defect 3 . We shall use this statement below.

It is useful to interpret the notion of defect in terms of graphs [2]. To a subset T we compare a graph $\Gamma(T)$ in the following way: vertices of $\Gamma(T)$ are elements of $T \backslash 1$ and edges are such pairs of vertices (a, b) that $a b \notin T$. Then the degree of the vertex a equals $\operatorname{deg} a=\left|T_{a}\right|$ and $\operatorname{def} T=\max _{a \in T} \operatorname{deg} a$.

In this section we obtain some general properties of subsets of any defect.

Theorem 3. Let $C_{1}, C_{2}, \ldots, C_{r}$ be connected components of the graph $\Gamma=\Gamma(T), 1 \leq i \neq j \leq r$. Then

1) There is such $k \leq r$ that $C_{i} C_{j} \subset C_{k}$.
2) If in 1) $k \neq i$ then $a C_{j}=C_{k}$ for every $a \in C_{i}$.

Proof. 1) It follows from definition of Γ that $C_{i} C_{j} \subset T$. Let $a \in C_{i}$. Since $a C_{j}$ is connected, it is contained in some component C_{k}. Similarly, if $x \in C_{j}$ then $C_{i} x \subseteq C_{l}$ for some $l \leq r$. But since $a x \in a C_{j} \cap C_{i} x$ then $k=l$ and k does not depend on a choice of a and x. Hence, $C_{i} C_{j} \subset C_{k}$.
2) Let $a \in C_{i}, a C_{j} \subset C_{k}$. Then $C_{j} \subset a C_{k}$. As $i \neq k$, by the first part of Theorem $a C_{k} \subset C_{j}$. Hence, $a C_{k}=C_{j}$.

We shall call a subset T homogeneous, if $\operatorname{def} T=\operatorname{deg} a$ for all $a \in T \backslash 1$ (i. e. if $\Gamma(T)$ is homogeneous). Theorem 4 gives more detailed information about structure of homogeneous subsets. We shall preliminary prove several assertions.

Proposition 1. Let T be a homogeneous subset, C_{i}, C_{j}, C_{k} such connected components of $\Gamma=\Gamma(T)$, that $C_{i} C_{j} \subset C_{k}$ and $i \neq j$. Then $a C_{j}=C_{k}$ for all $a \in C_{i}$.

Proof. Note that the graph $a C_{j}$ is isomorphic to the graph C_{j}, hence the homogeneous graph C_{k} contains a homogeneous subgraph of the same degree. From here $a C_{j}=C_{k}$.

Corollary 1. All connected components of the graph of a homogeneous subset T are isomorphic.

Proof. Let C_{i}, C_{j} be connected components of $\Gamma(T)$. According to Theorem 3 and Proposition 1 there is such a component C_{k} that $C_{i} C_{j}=C_{k}$. Moreover components C_{j} and $C_{k}=a C_{j}\left(a \in C_{i}\right)$ are isomorphic. Similarly C_{i} and C_{k} are isomorphic. Therefore C_{i} and C_{j} are isomorphic too.

Proposition 2. If the graph $\Gamma(T)$ of a homogeneous subset T is not connected then its components are complete graphs.

Proof. Let us assume that $\Gamma=\Gamma(T)$ is not connected and that among its connected components there is a non-complete one. Accordingly to Corollary 1 all components of Γ are isomorphic, so all of them are noncomplete.

Let us consider components C_{i}, C_{j}, C_{k}, for which $i \neq j$ and $C_{i} C_{j}=$ C_{k}. Since C_{i} is a non-complete connected component then $\left|C_{i}\right| \geq 3$ and there are such $a, b \in C_{i}$ that $a b \in T$. Then $a b \in C_{m}$ for some m. We shall prove that $m=i$. If it not so, $C_{i} C_{m} \subset C_{i}$, since, for example, $b=a \cdot a b \in C_{i} C_{m}$. Then accordingly to Corollary $1 x C_{m}=C_{i}$ for all $x \in C_{i}$. In particular, for $x=a$ we have: $a C_{m} \not \supset a$ and $C_{i} \ni a$; the contradiction.

Thus $a b \in C_{i}$. Then $a C_{j}=b C_{j}=a b C_{j}=C_{k}$, whence $C_{j}=b C_{j}=$ $C_{i} C_{j}=C_{k}$. So $j=k$. Similar reasoning for the non-complete component C_{j} shows, that $i=k$. We get a contradiction again.

Theorem 4. If T is homogeneous then either $\Gamma(T)$ is connected or T is strictly standard.

Proof. Suppose that $\Gamma(T)$ is not connected. Then by Proposition 2 all its components are complete.

Let $C_{1} \neq C_{2}$ are components of $\Gamma(T), x \in C_{1}$. We denote $H=x C_{1}$ and prove that H is a subgroup.

Let $C_{1} C_{2} \subset C_{3}$. According to Proposition 1
$x C_{2}=C_{3}=C_{1} y$ for any $y \in C_{2}$. Then $C_{3}=H x y$, whence $C_{2}=$ $C_{3} x=H y$. Therefore for $a, b \in H$ we have: $a x \cdot b y \in C_{3}$, i. e. $a b y \in C_{2}=$ $H y$. From here $a b \in H$.

Besides, it follows from this reasoning that every component has a form $C_{i}=x_{i} H$. Since the product of two various components contains in some component (Theorem 3), then $F=T \cup H$ is a subgroup, and $T=(F \backslash H) \cup 1$. By the definition T is strict standard.

We shall prove two more lemmas which will be used below for subsets of defect 3 .

Lemma 1. $\operatorname{deg} a \equiv \operatorname{def} T(\bmod 2)$ for every $a \in T \backslash 1$.
Proof. Since $a(T \cap a T)=T \cap a T$ then $T \cap a T$ contains, together with every x, an element $a x$ and, hence, $|T \cap a T|$ is even. From here $|T|=\mid T \cap$ $a T\left|+\left|T_{a}\right| \equiv\right| T_{a} \mid(\bmod 2)$ for all $a \in T$. In particular, $|T| \equiv \operatorname{def} T(\bmod 2)$. Thus, $\operatorname{deg} a \equiv \operatorname{def} T(\bmod 2)$.

Lemma 2. If $a, b, a b \in T$ then $\operatorname{deg} a b \leq \operatorname{deg} a+\operatorname{deg} b$.
Proof. Suppose the opposite: let $\operatorname{deg} a=k, \operatorname{deg} b=m, \operatorname{deg} a b=p>$ $k+m$. Then there are $x_{1}, \ldots, x_{p} \in T \backslash 1$ for which $a b x_{1}, \ldots, a b x_{p} \notin T$. Not less than $p-m$ elements among elements $b x_{j}(1 \leq j \leq p)$ are contained in T; let, for example, $b x_{1}, \ldots, b x_{p-m} \in T$. Since $p-m>k$ by hypothesis, there is such $x_{i}(1 \leq i \leq p-m)$ that $a b x_{i} \in T$, and we obtain a contradiction.

From Lemmas 1 and 2 it follows
Corollary 2. If $\operatorname{def} T$ is odd and $a, b, a b \in T$ then $\operatorname{deg} a b \leq \operatorname{deg} a+$ $\operatorname{deg} b-1$.

In particular,
Corollary 3. If $a, b, a b \in T$, and $\operatorname{deg} a=\operatorname{deg} b=1$ then $\operatorname{deg} a b=1$.

3. Non-homogeneous subsets of defect 3

From Lemma 1 it follows that a subset of defect 3 can contain only elements of the degree 1 and 3 . A number of following statements of this section is right for any subsets of odd defect, containing elements of the degree 1 ; therefore we shall assume, that T is just such a subset. If T will be a subset of defect 3 we shall stipulate it.

We introduce the following designations: $T_{1}=\{a \in T \mid \operatorname{deg} a=1\}$, $H=\left\langle T_{1}\right\rangle, S=T_{1} \cup 1$.

Lemma 3. $\left|H \backslash T_{1}\right| \leq 2$.
Proof. If $a S=S$ for every $a \in T_{1}$ then S, obviously, coincides with H and the lemma is proved. Suppose it is not so, i. e. $a S \backslash S \neq \emptyset$ for some $a \in T_{1}$. Let us fix some $x \in a S \backslash S$. Then $x=a b$, where $b \in T_{1}$. By Corollary $3 x \notin T$ (otherwise $\operatorname{deg} x=1$ and $x \in S$), hence $x \in a T \backslash T$. In view of the fact that $\operatorname{deg} a=1$, we obtain $|a S \backslash S|=1$ and $\operatorname{def} S=1$. However, by Theorem $1 S$ is standard, $|H \backslash S|=1$, so $\left|H \backslash T_{1}\right|=2$.

Thus, two cases are possible. We shall consider them separately:

1) $S=H \backslash f$, where f is an element from H;
2) $S=H$.

Proposition 3. If $S=H \backslash f$ then $T \backslash S$ is the join of cosets of H.
Proof. We shall prove that the equality $h(T \backslash S)=T \backslash S$ is right for every $h \in H$. Notice that for any $a \in T_{1}$ the degree of $a f$ also is equal 1. Therefore $f \notin T$ (otherwise $f \in T_{1}$ by Corollary 3), so $T_{a}=\{a f\}$. Hence, $a(T \backslash S) \subset T$. Besides $a(T \backslash S) \cap S=\emptyset$. Really, if it is not so, there is such $t \in T \backslash S$, that at $\in T_{1}$, but this contradicts Corollary 3.

Thus $a(T \backslash S)=T \backslash S$ for all $a \in T_{1}$. Since $a f \in T_{1}$ then $f(T \backslash S)=$ $f a \cdot a(T \backslash S)=f a(T \backslash S)=T \backslash S$.

Corollary 4. If $S=H \backslash f$ and $\operatorname{def} T \geq 3$ then $\operatorname{def} T \geq\left|T_{1}\right|+3$.
Proof. $T \cup H=T \cup\{f\}$ is not a subgroup, otherwise $\operatorname{def} T=1$ by Theorem 1. It follows out of Corollary 3 that there are $x, y \in T \backslash H$ such that $x y \notin T \cup H$. But then $x y H \cap(T \cup H)=\emptyset$, so $T_{x} \supset y H$. Besides the element $f x \notin y H$ also is contained in T_{x}. Hence, $\operatorname{deg} x \geq|H|+1 \geq$ $\left|T_{1}\right|+3$.
$>$ From here we obtain immediately that if $\operatorname{def} T=3$ then the case 1) is impossible, so, $H=S=T_{1} \cup 1$. In this situation (the case 2)) for every $a \in T_{1}$ there is an unique $x \in T \backslash T_{1}$ such that $w=x a \notin T$. Fix the elements a and x.

Proposition 4. Let $\operatorname{def} T \geq 3, T_{1} \cup 1=H$. Then one of the following statements takes place:

1) $T_{1} \subset T_{x}$.
2) If $b \in T_{1}, y \in T$ and $b y \notin T$ then $b y=w$. Besides $T \cup w$ is the join of cosets of H.

Proof. Assume that 1) is not executed and $b \in T_{1} \backslash T_{x}$, such that $b \neq a$ and $b \in T_{y}$ for some $y \neq x$. Since $\operatorname{deg} a=\operatorname{deg} b=1$ then $x b, y a \in T$. As $T_{1} \cup 1$ is a subgroup, $a b \in T_{1}$ and by Corollary $3 \operatorname{deg} a b=1$. But $x b \cdot a b, y a \cdot a b \notin T$, so $x b=y a$, whence $y b=w$. From here it follows also, that $T \cup w$ is the join of cosets of H.

Corollary 5. If the condition 2) of Proposition 4 is executed then $\operatorname{def} T \geq\left|T_{1}\right|+2$.

Proof. Since def $T \neq 1$, Theorem 1 implies that $T \cup w$ is not a subgroup. Therefore such $u, v \in T$ exist that $u v \notin T \cup w$, and at the same time at least one of these elements, for example u, is not contained in H. Then $u H \cdot v \cap T=\emptyset$, whence $\operatorname{deg} v \geq|H|$. As $|H|$ is even, we get from here $\operatorname{def} T \geq|H|+1=\left|T_{1}\right|+2$.

Corollary 6. If def $T=3$ and $T_{1} \subset T_{x}$ then either $\left|T_{1}\right|=3$ or $\left|T_{1}\right| \leq 1$.
Proof. According to the condition $T_{x} \supset T_{1}$, therefore $\left|T_{1}\right| \leq 3$. Since $T_{1} \cup 1$ is a subgroup for a subset T of defect $3,\left|T_{1}\right| \neq 2$.

Proposition 5. If def $T=3, T_{1} \subset T_{x}$ and $\left|T_{1}\right|=3$ then T is standard.
Proof. It is enough to show, that $\langle T\rangle=T \cup x T_{1}$. Indeed, $T_{1} T \subset T \cup x T_{1}$. Besides, since $T_{x} \supset T_{1}$ and $\left|T_{1}\right|=3$ then $T_{x}=T_{1}$. Hence, $x y \in T$ for every $y \in T \backslash T_{1}$. Consider an arbitrary element $a \in T_{1}$. Notice that $a x y \in T$, otherwise $x y \in T_{a}=\{x\}$. So $x y T_{1} \subset T$ and $T_{y}=x y T_{1}$. But then $y T \subset T \cup x T_{1}$.

Corollary 7. If def $T=3$ and T is non-standard then $\left|T_{1}\right| \leq 1$.
The next theorem is applicable both to homogeneous and to nonhomogeneous subsets of defect 3 and essentially confines a class of graphs which can correspond to these subsets.

Theorem 5. If T is non-standard and $\operatorname{def} T=3$ then diameters of connected components of $\Gamma(T)$ do not exceed 2 .

Proof. We shall prove by contradiction, using an induction on $|T|$. Let $a, b \in T$ and

$$
\begin{equation*}
a \quad x \quad y \quad b \tag{1}
\end{equation*}
$$

is the shortest way from a to b in the graph Γ. Then $a x, x y, y b \notin T$, $a y, x b, a b \in T$.

Let H be a subgroup generated by elements a, x, y, b. We shall prove some auxiliary statements (Lemmas 4-7).

Lemma 4. Elements a, x, y, b form a basis in H.
Proof. If in the subgroup H it holds $w=1$ for some word w in the alphabet $\{a, x, y, b\}$, then the length of w should be not less than 3 because all elements a, x, y, b are different. Therefore w coincides with one of the words $a x y b, a x y, a x b, a y b, x y b$. If $a x y b=1$, then $a b=x y$, but $a b \in T$, and $x y \notin T$; the contradiction. If $a x y=1$ then $y=a x \notin T$. The other variants are similarly impossible.

Lemma 5. $T \not \subset H$.
Proof. Assume that $T \subset H$. Since T is non-standard, it is contained in $H \backslash T$ (in addition to $a x, x y, y b$) even one of elements $a x y b$, $a x y$, $a x b$, $a y b, x y b$. Consider the possible cases.

1) $a x b \notin T$. Then $x b \in T_{a}$ and $a b \in T_{x}$. Hence $T_{x}=\{a, y, a b\}$ and therefore $a x y \in T$. Similarly from $T_{a b}=\{x, x b, a y\}$ it follows $a y b \in$ T. But then $x, x b, a y b, a x y \in T_{a}$. By Lemma 4 all these elements are different, so $\left|T_{a}\right| \geq 4$, that is impossible. Hence $a x b \in T$ and similarly $a y b \in T$.
2) $a x y \notin T, a x b, a y b \in T$. Then $T_{x}\{a, y, a y\}$. Therefore $a y b \notin T_{x}$, i.e. $a x y b \in T$. If $x y b \notin T$ there would be a way of length 2 :

contrary to the assumption. Hence $x y b \in T$. But then $T_{x} \supseteq\{a, y, a y, x y b\}$. The contradiction. Therefore $a x y \in T$ and similarly $x y b \in T$.
3) $a x y b \notin T, a x y, a x b, a y b, x y b \in T$. Then $T_{x} \supseteq\{a, y, a y b, x y b\}$, that is impossible.

Remark. Proving in Lemma 5 the inequality $\left|T_{t}\right| \geq 4$ for some $t \in T$, we base each time on Lemma 4. Further we shall use this lemma without the reference to it.

Denote $\bar{T}=H \cap T, \bar{\Gamma}=\Gamma(\bar{T})$.
Lemma 6. $\operatorname{def} \bar{T}=3$ and \bar{T} is standard.
Proof. For any $t \in T$ we have:

$$
\bar{T} \backslash t \bar{T}=(T \cap H) \backslash(t T \cap H)=(T \cap H) \backslash t T
$$

whence $|\bar{T} \backslash t \bar{T}| \leq|T \backslash t T| \leq 3$. Suppose that $\operatorname{def} \bar{T}=2$. From $\bar{T}_{x}=\{a, y\}$ and $a y \in \bar{T}$ it follows $a x y \in \bar{T}$. But then $\bar{T}_{y} \supseteq\{x, b, a x y\}$ and $\operatorname{def} \bar{T} \geq 3$.

Thus $\operatorname{def} \bar{T}=3$. Since $|\bar{T}|<|T|$ (Lemma 5) and the way (1) is contained in \bar{T}, then by the assumption of induction \bar{T} is standard.

Evidently, $\bar{T}=H \backslash\{a x, x y, y b\}$ and $\bar{\Gamma}$ has the form

Denote these components by C_{1} and C_{2}.
Lemma 7. $z H \subset T$ for every $z \in T \backslash \bar{T}$.
Proof. Since all vertices of C_{1} have the degree $3, z$ is not connected with any of them by an edge, i.e. $z C_{1} \subset T$, and for the same reason $a b z \in T$. If $z \bar{T} \not \subset T$, let, for example, $a y z \notin T$. Then $a z \in T_{y}=\{x, b, a x y\} \subset H$ contrary to $z \notin H$. Therefore $z \bar{T} \subset T$.

It remains to show that $z(H \backslash \bar{T}) \subset T$. If $z a x \notin T$ then $z a \in T_{x}=$ $\{a, x, x y b\}$. The contradiction. Hence, $z a x \in T$ and similarly $z x y, z y b \in$ T.

Returning to the proof of the theorem, we note, that in each coset $z H \subset T$ there is an element u, such that $\left|T_{u}\right|=3$ (e.g., $T_{u}=\{x z, a x y z$, $a y b z\}$ for $u=a z)$.

Denote by K the join of all cosets of H which have nonempty intersection with T (in fact, by Lemma 7 all of them, except H, are contained in T). We shall prove, that K is a subgroup. Indeed, let $u H$ and $v H$ be two different cosets, such that $u H \neq H \neq v H, u H \cup v H \subset T$. Besides, let their representatives u and v be chosen in such a way that $\left|T_{u}\right|=\left|T_{v}\right|=3$. If $u v \notin T$ then $v \in T_{u}=\{a x u, x u y, y b u\}$. This is impossible, since $u H \neq v H$. Hence $u v \in T$ and $u v H \subset T$.

But then $T=K \backslash\{a x, x y, y b\}$ is standard.
Now we can prove the main result of this section:
Theorem 6. If def $T=3$ and T is non-homogeneous then T is standard.
Proof. Assume the opposite. Let $T_{1} \neq \emptyset$. Then according to Corollary 7 $T_{1}=\{a\}$ for some $a \in T$. Let $x \in T \backslash T_{1}$ and $a x \notin T$. Since $\operatorname{deg} x=3$, there is such an element $u \in T \backslash T_{1}$ that $x u \notin T$. Furthermore, there are such $v_{1}, v_{2} \in T \backslash T_{1}$ that $v_{i} \neq x, v_{i} u \notin T(i=1,2)$. We obtain a way

By Theorem $5 a z, z v_{1} \notin T$ for some $z \in T$. Since $\operatorname{deg} a=1$ then $z=x$ and $x v_{1} \notin T$. Similarly $x v_{2} \notin T$. But then $\operatorname{deg} x \geq 4$. This is impossible.

4. Homogeneous subsets of defect 3

In this section we shall assume, that T is a non-standard homogeneous subset of defect 3 . In this case its graph $\Gamma(T)$ is connected by Theorem 4. We shall find out, how $\Gamma(T)$ looks and show that there are only 3 non-standard homogeneous subsets.

We need the following lemma:
Lemma 8. Let $a \in T$ and $T_{a}=\{b, c, d\}$. Then either $b c, b d, c d \notin T$ or $b c, b d, c d \in T$.

Proof. Obviously, if $b c d=1$, the lemma is right. Let $b c d \neq 1$. Assume opposite, let, e.g., $b c \in T, b d \notin T$. Since $b c d \neq 1$ then $b c \notin T_{a}$. Therefore $a b c \in T$, whence $a b c \in T_{b} \cap T_{c}$. Consider the shortest way from b to $b c$ (it exists because $\Gamma(T)$ is connected). By Theorem 5 it contains not more than two edges. As $b c \notin T_{a} \cup T_{b} \cup T_{a b c}$, this way consists of edges (b, d) and ($d, b c$), so $b c d \notin T$ (see fig.).

Since $a b c \notin T_{d}=\{a, b, b c\}, a b c d \in T$, but then $a b c d \in T_{a}=\{b, c, d\}$, what leads to the contradiction.

Consider two cases for the graph $\Gamma(T)$.

1) Let such a vertex a exist in Γ, that $T_{a}=\{b, c, d\}$ and $b c d \neq 1$. If $b c, b d, c d \notin T$ then by Lemma 8 we get that Γ is the complete graph K_{4} with four vertices:

On the other hand, if $b c, b d, c d \in T$ we get $a b c, a b d, a c d \in T$ (because $b c, b d, c d \notin T_{a}$). From here $T_{b}=\{a, a b c, a b d\}, T_{c}=\{a, a b c, a c d\}$, $T_{d}=\{a, a b d, a c d\}$. We note also that $b c d \in T$, otherwise $c d \in T_{b}=$
$\{a, a b c, a b d\}$, what is impossible. Therefore the graph Γ in this case should look so:

However, diameter of this graph equals 3, what contradicts Theorem 5. Thus, this case is impossible.
2) Consider now the case when for all $t \in T$, from $T_{t}\{x, y, z\}$ it follows $x y z=1$. Let $a \in T$. Then T_{a} has a form $T_{a}=\{b, c, b c\}$ for some $b, c \in T$. Besides $T_{b}=\{a, d, a d\}$ for some $d \in T$. From here it follows

$$
\begin{equation*}
a b, a c, a b c, b d, a b d \notin T . \tag{2}
\end{equation*}
$$

We shall consider several subcases:
a) Suppose that $c d \in T$. Then $c d \in T_{b c} \cap T_{a d}$. Since $T_{c d} \supset\{a d, b c\}$ then $T_{c d}=\{a d, b c, a b c d\}$, and similarly $T_{b c}=\{a, c d, a c d\}, T_{a d}=\{b, c d, b c d\}$. It follows from (2) that $T_{a c d}=\{d, b c, b c d\}, T_{b c d}=\{c, a c d, a d\}, T_{a b c d}=$ $\{c, d, c d\}, T_{d}=\{a c d, b, a b c d\}, T_{c}=\{a, b c d, a b c d\}$. Therefore the graph looks so:

It is so-called Petersen graph [2].
b) Analogously, if $a b c d \in T$, we obtain the same graph.
c) If $c d, a b c d \notin T, \Gamma(T)=K_{3,3}$, a complete bipartite graph:

Thus, we proved
Theorem 7. If T is a non-standard homogeneous subset of defect 3, then $\Gamma(T)$ is either the complete graph K_{4}, or the Petersen graph, or the complete bipartite graph $K_{3,3}$.

To formulate the main result of this section, we need the next definition.

Let T, U are subsets of the group G. We say that T is isomorphic to U if there exists such a bijection $f: T \rightarrow U$ that $f(a b)=f(a) f(b)$, as soon as $a, b, a b \in T$ (this definition means that $\Gamma(T)$ and $\Gamma(U)$ are isomorphic).

Theorem 8. Each homogeneous subset T of defect 3 is either standard, or isomorphic to one of the following subsets

1) $\{1, x, y, z, w\}$,
2) $\{1, x, y, z, w, x w, y z\}$,
3) $\{1, x, y, z, w, x y, x z, x w, y z, y w, z w\}$,
where x, y, z, w are linearly independent elements of the group G.
Proof. Let T be non-standard. By Theorem 7 its graph $\Gamma(T)$ is:
either the complete graph K_{4}, and then $T=\{1, a, b, c, d\}$;
or the complete bipartite graph $K_{3,3}$, and then $T=\{1, a, b, c, d, a d, b c\}$;
or the Petersen graph, and then $T=\{1, a, b, c, d, a d, b c, c d, a c d, b c d, a b c d\}$.
The last subset is isomorphic to the subset 3) from the condition of the theorem. Indeed, isomorphism between them is realized by function f, for which

$$
f(a)=x, f(b)=y z, f(c)=y w, f(d)=w
$$

From the description of subsets of defect 3, and also from Theorems 1 and 2 , we obtain the following
Corollary 8. Let a, b, c, d be different elements from $G \backslash 1$. Then for the set $T=G \backslash\{a, b, c, d\}$ the following statements are fulfilled:

If $|G|=8$ then T is either a subgroup of order 4 or a non-standard subset of defect 2 .

If $|G|>8$ then T is a (standard) subset of defect 4 .

Proof. Evidently, def $T \leq 4$. Let $|G|=8$. Then T contains, besides 1 , three more elements. If they are linearly dependent, T is a subgroup if not then T is a subset of defect 2 by Theorem 2 .

Let $|G|>8$. Note that T cannot be a standard subset of defect, smaller than 4 . Then by Theorem $1 \operatorname{def} T \neq 1$. Non-standard subsets of defect 2 contain 4 elements, and non-standard ones of defect 3 can contain only 5,7 or 11 elements. Since $|T|=2^{k}-4$ for some natural $k \geq 4$ then $\operatorname{def} T \neq 2$ and $\operatorname{def} T \neq 3$.

References

[1] E. R. Berlekamp. Algebraic Coding Theory. Moscow, Mir, 1971 (in Russian).
[2] F. Harary. Graph theory. Moscow, Mir, 1973 (in Russian).
[3] B. V. Novikov. On a characteristic of subsets of Abelian groups. Discrete Mathematics and Applications (Bulgaria), 6(2002), 97-101.

Contact information

B. V. Novikov \quad	Saltovskoye shosse 258 apt. 20, 61178
	Kharkov, Ukraine
	E-Mail: boris.v.novikov@univer.
	kharkov.ua

L. Yu. Polyakova B. Chichibabina str. 2 apt. 84, 61022 Kharkov, Ukraine
E-Mail: nataliya.yu.tyutryumova@
univer.kharkov.ua

Received by the editors: 24.06.2004
and final form in 06.12.2004.

