Partial resolutions in monoid cohomology

P. A. Grillet
Communicated by B. V. Novikov

Abstract

Partial resolutions are constructed for the EilenbergMacLane cohomology of monoids, with applications to examples.

Introduction

The Eilenberg-MacLane cohomology groups of a monoid S are usually computed from projective resolutions of the trivial S-module \mathbb{Z}, as computation from cocycles tends to be very unwieldy [6], [7], [8]. When S has a complete (Church-Rosser) and reduced presentation, Squier's partial resolution [9] leads to simpler computations in dimensions $n \leq 2$ (in some cases, $n \leq 3$ [5]).

When S is commutative, its commutative cohomology groups are likewise difficult to compute, but the overpath method, introduced in [4], yields markedly simpler computations of H^{2} by cocycles, directly from presentations of S [2], [3].

It turns out that the two results are closely related. When the overpath method is adapted to Eilenberg-MacLane cohomology, forsaking commutativity and using cycles rather than cocycles, the result is a partial resolution, constructed in Section 1, which is very similar to Squier's but applies to any presentation. Squier's resolution is retrieved in Section 2 , with minor modifications, if the presentation is complete and reduced, or almost reduced.

Section 3 sets up the computation of H^{0}, H^{1}, H^{2} by cocycles. Section 4 computes H^{2} for five examples: finite cyclic groups and monoids; the bicyclic semigroup; the free commutative monoid on two generators; the
monoid freely generated by two idempotents; and the free band with identity on two generators.

The author is very thankful to Prof. B.V. Novikov for timely advice and suggestions.

1. First resolution

1. In what follows, S is an arbitrary monoid, determined by a presentation as the the quotient of the free monoid F on a set X (often denoted by X^{*}) by the congruence generated by a binary relation R on F (often called a rewrite system). The elements of R are ordered pairs $r=\left(r^{\prime}, r^{\prime \prime}\right)$ of elements of F. We denote the identity elements of S and F by 1, and the projection $F \longrightarrow S$ by $a \longmapsto \bar{a}$.

In F, a connecting sequence from $a \in F$ to $b \in F$ consists of sequences $a_{0}, a_{1}, \ldots, a_{n}, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$ of elements of F and a sequence r_{1}, \ldots, r_{n} of elements of R, such that $n \geq 0, a=a_{0}, a_{n}=b$, and, for every $1 \leq i \leq n$, either $a_{i-1}=u_{i} r_{i}^{\prime} v_{i}$ and $a_{i}=u_{i} r_{i}^{\prime \prime} v_{i}$, or $a_{i-1}=u_{i} r_{i}^{\prime \prime} v_{i}$ and $a_{i}=u_{i} r_{i}^{\prime} v_{i}$. This definition is justified by the description of the congruence \sim generated by R : namely, $a \sim b(\bar{a}=\bar{b})$ if and only if there exists a connecting sequence from a to b.

In this section we construct a partial projective resolution

$$
M_{3} \xrightarrow{\partial_{3}} M_{2} \xrightarrow{\partial_{2}} M_{1} \xrightarrow{\partial_{1}} M_{0} \xrightarrow{\epsilon} \mathbb{Z}
$$

of the trivial \S-module \mathbb{Z}, which resembles Squier's resolution [9] but has a different module M_{3} and requires no hypothesis on R.

As in $[9], M_{0}=\mathbb{Z}[S] ; M_{1}$ is the free \S-module with one basis element $[x]$ for each generator $x \in X$ of $F ; \epsilon: \mathbb{Z}[S] \longrightarrow \mathbb{Z}$ is the augmentation homomorphism

$$
\epsilon\left(\sum_{s \in S} n_{s} s s\right)=\sum_{s \in S} n_{s} s
$$

and $\partial_{1}: M_{1} \longrightarrow \mathbb{Z}[S]$ is the module homomorphism such that

$$
\partial_{1}[x]=\bar{x}-1
$$

for all $x \in X$; equivalently, the additive homomorphism such that

$$
\begin{equation*}
\partial_{1} s[x]=s \bar{x}-s \tag{1}
\end{equation*}
$$

Lemma 1.1. [9] $\operatorname{Im} \partial_{1}=\operatorname{Ker} \epsilon$.
Proof. First, $\epsilon \partial_{1}[x]=\epsilon(\bar{x}-1)=0$ for all $x \in X$, so that $\operatorname{Im} \partial_{1} \subseteq \operatorname{Ker} \epsilon$. For the converse we construct some maps which will be used later.

The expansion mapping $\xi: F \longrightarrow M_{1}$ is defined by:

$$
\begin{equation*}
\xi\left(x_{1} x_{2} \ldots x_{n}\right)=\sum_{1 \leq i \leq n} x_{1} x_{2} \ldots x_{i-1}\left[x_{i}\right] \tag{2}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ (in particular, $\xi x=[x]$ and $\xi 1=0$). We see that $\partial_{1} \xi\left(x_{1} x_{2} \ldots x_{n}\right)=\bar{x}_{1}-1+\sum_{2 \leq i \leq n}\left(x_{1} x_{2}{ }^{-} \ldots x_{i}-x_{1} x_{2} \ldots x_{i-1}\right)=$ $x_{1} x_{2} \ldots x_{n}-1$, so that

$$
\begin{equation*}
\partial_{1} \xi a=\bar{a}-1 \tag{3}
\end{equation*}
$$

for all $a \in F$.
For each $s \in S$ choose any representative word $w_{s} s \in F$ such that $\overline{w_{s}} s=s$. Let $\sigma_{0}: \mathbb{Z}[S] \longrightarrow M_{1}$ be the additive homomorphism such that

$$
\begin{equation*}
\sigma_{0} s=\xi w_{s} s \tag{4}
\end{equation*}
$$

for all $s \in S$. Let $\zeta: \mathbb{Z} \longrightarrow \mathbb{Z}[S]$ be the additive homomorphism $\zeta(n)=$ $n 1$. By the above,

$$
\partial_{1} \sigma_{0} s+\zeta \epsilon s=\overline{w_{s}} s-1+1=s
$$

for all $s \in S$, so that $\partial_{1} \sigma_{0}+\zeta \epsilon$ is the identity on $\mathbb{Z}[S]$. Hence $\operatorname{Ker} \epsilon \subseteq$ $\operatorname{Im} \partial_{1}$.
2. As in [9], M_{2} is the free \S-module with one basis element $[r]$ for each $r \in R ; \partial_{2}: M_{2} \longrightarrow M_{1}$ is the module homomorphism such that

$$
\begin{equation*}
\partial_{2}[r]=\xi r^{\prime}-\xi r^{\prime \prime} \tag{5}
\end{equation*}
$$

for all $r \in R$, where ξ is the expansion mapping above.
To study M_{2} we construct another trace map τ. Let P be a connecting sequence, consisting of sequences $a_{0}, a_{1}, \ldots, a_{n}, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$ of elements of F and a sequence r_{1}, \ldots, r_{n} of elements of R, such that $n \geq 0, a=a_{0}, a_{n}=b$, and, for every $1 \leq i \leq n$, either $a_{i-1}=u_{i} r_{i}^{\prime} v_{i}$ and $a_{i}=u_{i} r_{i}^{\prime \prime} v_{i}$, or $a_{i-1}=u_{i} r_{i}^{\prime \prime} v_{i}$ and $a_{i}=u_{i} r_{i}^{\prime} v_{i}$. Then

$$
\begin{equation*}
\tau P=\sum_{1 \leq i \leq n} \epsilon_{i} \bar{u}_{i}\left[r_{i}\right] \tag{6}
\end{equation*}
$$

where $\epsilon_{i}=+1$ if $a_{i-1}=u_{i} r_{i}^{\prime} v_{i}, a_{i}=u_{i} r_{i}^{\prime \prime} v_{i}, \epsilon_{i}=-1$ if $a_{i-1}=u_{i} r_{i}^{\prime \prime} v_{i}$, $a_{i}=u_{i} r_{i}^{\prime} v_{i}$.

Since $\xi(a b)=\xi a+\bar{a} \xi b$ for all $a, b \in F$, we have, in the above,

$$
\begin{aligned}
\xi a_{i-1} & =\xi u_{i} r_{i}^{\prime} v_{i}=\xi u_{i}+\bar{u}_{i} \xi r_{i}^{\prime}+\overline{u_{i} r_{i}^{\prime}} \xi v_{i} \\
\xi a_{i} & =\xi u_{i} r_{i}^{\prime \prime} v_{i}=\xi u_{i}+\bar{u}_{i} \xi r_{i}^{\prime \prime}+\overline{u_{i} r_{i}^{\prime \prime}} \xi v_{i}
\end{aligned}
$$

or vice versa; since $\bar{u}_{i} r_{i}^{\prime}=\bar{u}_{i} r_{i}^{\prime \prime}$ this yields

$$
\xi a_{i-1}-\xi a_{i}=\epsilon_{i} \bar{u}_{i}\left(\xi r_{i}^{\prime}-\xi r_{i}^{\prime \prime}\right)=\epsilon_{i} \bar{u}_{i} \partial_{2}\left[r_{i}\right]
$$

and

$$
\begin{equation*}
\xi a-\xi b=\sum_{1 \leq i \leq n}\left(\xi a_{i-1}-\xi a_{i}\right)=\partial_{2} \tau P \tag{7}
\end{equation*}
$$

for every connecting sequence P from a to b.
Lemma 1.2. [9] $\operatorname{Ker} \partial_{1}=\operatorname{Im} \partial_{2}$.
Proof. By (3), (5), $\partial_{1} \partial_{2}[r]=\partial_{1} \xi r^{\prime}-\partial_{1} \xi r^{\prime \prime}=\bar{r}^{\prime}-\bar{r}^{\prime \prime}=0$ for all $r \in R$; hence $\operatorname{Im} \partial_{2} \subseteq \operatorname{Ker} \partial_{1}$.

To prove the converse we expand the partial contracting homotopy σ. For every $s \in S$ and $x \in X$ choose one arbitrary connecting sequence $P_{s, x}$ from $w_{s} s x$ to $w_{s \bar{x}}$. Let $\sigma_{1}: M_{1} \longrightarrow M_{2}$ be the additive homomorphism such that

$$
\begin{equation*}
\sigma_{1} s[x]=\tau P_{s, x} \tag{8}
\end{equation*}
$$

for all $s \in S$ and $x \in X$. Then

$$
\begin{aligned}
\partial_{2} \sigma_{1} s[x]+\sigma_{0} \partial_{1} s[x] & =\partial_{2} \tau P_{s, x}+\sigma_{0}(s \bar{x}-s) \quad \text { by }(8),(1) \\
& =\xi\left(w_{s} s x\right)-\xi w_{s} \bar{x}+\xi w_{s} \bar{x}-\xi w_{s} s \quad \text { by }(7),(4) \\
& =\xi\left(w_{s} s x\right)-\xi w_{s} s=\bar{w}_{s} s[x]=s[x], \quad \text { by }(2),
\end{aligned}
$$

so that $\partial_{2} \sigma_{1}+\sigma_{0} \partial_{1}$ is the identity on M_{1}. Hence $\operatorname{Ker} \partial_{1} \subseteq \operatorname{Im} \partial_{2}$.
3. Coterminal connecting sequences are connecting sequences P, Q from the same $a \in F$ to the same $b \in F . M_{3}$ is the free S-module generated by all ordered pairs $[P, Q]$ of coterminal connecting sequences; ∂_{3} is the module homomorphism such that

$$
\begin{equation*}
\partial_{3}[P, Q]=\tau Q-\tau P \tag{9}
\end{equation*}
$$

where τ is the trace map above. (One may further assume that the generators of M_{3} satisfy $[P, P]=0$ and $[Q, P]=-[P, Q]$.)

Lemma 1.3. $\operatorname{Ker} \partial_{2}=\operatorname{Im} \partial_{3}$.
Proof. By (7), $\partial_{2} \tau P=\xi a-\xi b$ when P is a connecting sequence from a to b. If now P and Q are connecting sequences from a to b, then $\partial_{2} \partial_{3}[P, Q]=\partial_{2}(\tau Q-\tau P)=0$; hence $\operatorname{Im} \partial_{3} \subseteq \operatorname{Ker} \partial_{2}$.

For the converse inclusion we use some properties of the trace map τ. Combining a connecting sequence P from a to b with a connecting sequence Q from b to c yields a connecting sequence $P+Q$ from a to c;
if P consists of sequences $a_{0}, a_{1}, \ldots, a_{n}, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in F$ and a sequence $r_{1}, \ldots, r_{n} \in R$, and Q consists of sequences $b_{0}, b_{1}, \ldots, b_{m}$, $t_{1}, \ldots, t_{m}, w_{1}, \ldots, w_{m} \in F$ and a sequence $s_{1}, \ldots, s_{n} \in R$, then $P+Q$ consists of the sequences $a_{0}, a_{1}, \ldots, a_{n}=b_{0}, b_{1}, \ldots, b_{m} ; u_{1}, \ldots, u_{n}, t_{1}$, $\ldots, t_{m} ; v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{m}$; and $r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{n}$. We see that

$$
\begin{equation*}
\tau(P+Q)=\tau P+\tau Q \tag{10}
\end{equation*}
$$

Reversing a connecting sequence P from a to b yields a connecting sequence $-P$ from b to a; if P consists of sequences $a_{0}, a_{1}, \ldots, a_{n}, u_{1}, \ldots$, $u_{n}, v_{1}, \ldots, v_{n} \in F$ and $r_{1}, \ldots, r_{n} \in R$, then $-P$ consists of a_{n}, a_{n-1}, $\ldots, a_{1}, a_{0}, u_{n}, \ldots, u_{1}, v_{n}, \ldots, v_{1}$ and r_{n}, \ldots, r_{1}. We see that

$$
\begin{equation*}
\tau(-P)=-\tau P \tag{11}
\end{equation*}
$$

When $c, d \in F$ and P is a connecting sequence from a to b, consisting of sequences $a_{0}, a_{1}, \ldots, a_{n}, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in F$ and a sequence r_{1}, $\ldots, r_{n} \in R$, then $c P d$ is a connecting sequence from $c a d$ to $c b d$, consisting of sequences $c a_{0} d, c a_{1} d, \ldots, c a_{n} d, c u_{1}, \ldots, c u_{n}, v_{1} d, \ldots, v_{n} d$, and the same r_{1}, \ldots, r_{n}. We see that

$$
\begin{equation*}
\tau(c P d)=\bar{c} \tau P \tag{12}
\end{equation*}
$$

For every $a=x_{1} x_{2} \ldots x_{n} \in F$, where $x_{1}, x_{2}, \ldots, x_{n} \in X$, we have a connecting sequence

$$
\begin{equation*}
P_{s} a=P_{1, x_{1}} x_{2} \ldots x_{n}+P_{\bar{x}_{1}, x_{2}} x_{3} \ldots x_{n}+\cdots+P_{x_{1} \ldots \bar{x}_{n-1}, x_{n}} \tag{13}
\end{equation*}
$$

from a to $w_{\bar{a}}$ obtained by combining the connecting sequences $P_{1, x_{1}}$ from x_{1} to $w_{\bar{x}_{1}}, P_{\bar{x}_{1}, x_{2}}$ from $w_{\bar{x}_{1}} x_{2}$ to $w_{x_{1} x_{2}}, P_{x_{1} x_{2}, x_{3}}$ from $w_{x_{1} \bar{x}_{2}} x_{3}$ to $w_{x_{1} \overline{x_{2}} x_{3}}$, $\ldots, P_{x_{1} \ldots \bar{x}_{n-1}, x_{n}}$ from $w_{x_{1} \ldots \bar{x}_{n-1}} x_{n}$ to $w_{x_{1} \ldots x_{n}}$. By the above,

$$
\begin{equation*}
\tau P_{s} a=\tau P_{1, x_{1}}+\tau P_{\bar{x}_{1}, x_{2}}+\cdots+\tau P_{x_{1} \ldots \bar{x}_{n-1}, x_{n}}=\sigma_{1} \xi a \tag{14}
\end{equation*}
$$

For every $r \in R$ there is also a connecting sequence, which may be denoted by r, from r^{\prime} to $r^{\prime \prime}$, with trace $\tau r=[r]$. This yields two connecting sequences $P_{r^{\prime}}$ and $r+P_{r^{\prime \prime}}$ from r^{\prime} to $w_{\bar{r}^{\prime}}=w_{\bar{r}^{\prime \prime}}$. We can now extend our partial contracting homotopy with the module homomorphism $\sigma_{2}: M_{2} \longrightarrow M_{3}$ such that

$$
\begin{equation*}
\sigma_{2}[r]=\left[P_{r^{\prime}}, r+P_{r^{\prime \prime}}\right] \tag{15}
\end{equation*}
$$

For every $r \in R$,

$$
\partial_{3} \sigma_{2}[r]+\sigma_{1} \partial_{2}[r]=\tau r+\tau P_{r^{\prime \prime}}-\tau P_{r^{\prime}}+\sigma_{1} \xi r^{\prime}-\sigma_{1} \xi r^{\prime \prime}=[r]
$$

by (9), (5), and (14). Hence $\operatorname{Ker} \partial_{2} \subseteq \operatorname{Im} \partial_{3}$.

Since $M_{0}, M_{1}, M_{2}, M_{3}$ are free $\mathbb{Z}[S]$-modules, Lemmas 1.1, 1.2, 1.3 yield

Theorem 1.4. $M_{3} \longrightarrow M_{2} \longrightarrow M_{1} \longrightarrow M_{0} \longrightarrow \mathbb{Z}$ is a partial projective resolution of the trivial ξ-module \mathbb{Z}.

2. Squier's resolution

1. In F, a path P from $a \in F$ to $b \in F$ consists of sequences a_{0}, a_{1}, \ldots, $a_{n}, u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$ of elements of F and a sequence r_{1}, \ldots, r_{n} of elements of R, such that $n \geq 0, a=a_{0}, a_{n}=b$, and, for every $1 \leq i \leq n$, $a_{i-1}=u_{i} r_{i}^{\prime} v_{i}$ and $a_{i}=u_{i} r_{i}^{\prime \prime} v_{i}$ (always going from r^{\prime} to $r^{\prime \prime}$); P is trivial if $n=0$, simple if $n=1$. We write $a \xrightarrow{P} b$ when P is a path from a to $b, a \longrightarrow b$ when there is a path from a to b (the latter is often written $a \xrightarrow{*} b$, with $a \longrightarrow b$ denoting a simple path). A connecting sequence from a to b (as in Section 1) can be decomposed into paths running in alternating directions:

$$
a \longleftarrow . \longleftrightarrow . \longleftrightarrow . \longleftrightarrow
$$

with the first and last paths possibly trivial.
A presentation, or its set R of defining relations, is terminating or Noetherian if there is no infinite sequence $. \longrightarrow . \longrightarrow \ldots \longrightarrow . \longrightarrow$ of simple paths; equivalently, no infinite sequence $. \longrightarrow . \longrightarrow \ldots \longrightarrow$ \ldots of nontrivial paths. In a terminating presentation, there is for every $a \in F$ a path $a \longrightarrow w$ in which w is irreducible, that is, there is no simple path $w \longrightarrow c$; equivalently, there is no equality $w=u r^{\prime} v$ with $r \in R$.

A wedge is a pair of paths $a \longrightarrow b$ and $a \longrightarrow c$. A diamond is a quadruple of four paths $a \longrightarrow b \longrightarrow d, a \longrightarrow c \longrightarrow d$.

R is confluent if every wedge can be completed to a diamond: if for every paths $a \longrightarrow b$ and $a \longrightarrow c$ there exist paths $b \longrightarrow d$ and $c \longrightarrow d$. R is complete if it is terminating and confluent.
R is Church-Rosser if for every $a, b \in F$ such that $\bar{a}=\bar{b}$ there exist paths $a \longrightarrow c, b \longrightarrow c$. A terminating presentation is Church-Rosser if
and only if it is complete, if and only if for every $a \in F$ there is a unique irreducible $w \in F$ with a path $a \longrightarrow w$.

We call R semi-reduced if $r^{\prime}=u s^{\prime} v$ implies $r^{\prime}=s^{\prime}$ when $r, s \in R ; R$ is reduced if R is semi-reduced and $r^{\prime \prime}$ is irreducible for every $r \in R[9]$. Every terminating Church-Rosser presentation is equivalent to a reduced terminating Church-Rosser presentation [9]. Squier's resolution assumes a reduced terminating Church-Rosser presentation, and can therefore be applied, after reduction, to any terminating Church-Rosser presentation.
2. Presentations with some of these properties are readily constructed from existing presentations by means of order relations on F. When $<$ is a strict order relation on F, a presentation is ordered $($ by $<)$ if $r^{\prime}>r^{\prime \prime}$ for every $r \in R$. If $<$ is compatible (if $a<b$ implies $u a v<u b v$ for all $u, v \in F)$, then paths are descending ($a \longrightarrow b$ implies $a \geq b$).

Proposition 2.1. Every free monoid F has a compatible well order. Relative to any such:
(a) every monoid presentation $R \subseteq F \times F$ is equivalent to an ordered presentation; every ordered presentation is terminating;
(b) every ordered monoid presentation is equivalent to a complete, ordered presentation;
(c) every complete, ordered monoid presentation is equivalent to a semi-reduced complete, ordered presentation;
(d) every semi-reduced, complete, ordered monoid presentation is equivalent to a reduced complete, ordered presentation.

Parts (c) and (d) are due to [9]. Part (a) has a converse of sorts: any terminating presentation is ordered for the corresponding order relation

$$
a>b \text { if and only if there exists a nontrivial path } a \longrightarrow b,
$$

which is a compatible strict partial order relation on F; moreover, the descending chain condition holds in F.

Proof. The generating set X can be well ordered; words of fixed length can be well ordered lexicographically; then

$$
a>b \text { if and only if either }|a|>|b| \text {, or }|a|=|b| \text { and } a>b
$$

(where $|a|$ denotes the length of a) is a compatible well order on F.
(a) Given $R \subseteq F \times F$, we can delete from R all trivial pairs (w, w), and replace $\left(r^{\prime}, r^{\prime \prime}\right) \in R$ by $\left(r^{\prime \prime}, r^{\prime}\right)$ whenever $r^{\prime}<r^{\prime \prime}$. This yields a presentation which is ordered and equivalent to R. Ordered presentations are terminating since the descending chain condition holds in F.
(b) Given an ordered presentation R, let \bar{R} be the union of R and the set of all $r=\left(r^{\prime}, r^{\prime \prime}\right) \in F \times F$ such that $r^{\prime}>r^{\prime \prime}$ and there exists a wedge $x \longrightarrow r^{\prime}, x \longrightarrow r^{\prime \prime}$ which cannot be completed to a diamond. Since $x \longrightarrow r^{\prime}, x \longrightarrow r^{\prime \prime}$ implies $\bar{x}=\bar{r}^{\prime}=\bar{r}^{\prime \prime}, R$ and \bar{R} generate the same congruence and are equivalent. Moreover, \bar{R} is ordered by definition, and every wedge $a \longrightarrow b, a \longrightarrow c$ which cannot be completed to a diamond in R yields some $r \in \bar{R}$ and can be completed to a diamond in \bar{R} : to $a \longrightarrow b \xrightarrow{1,(b, c), 1} c, a \longrightarrow c \longrightarrow c$ if $b>c$, to $a \longrightarrow b \longrightarrow b$, $a \longrightarrow c \xrightarrow{1,(z, y), 1} b$ if $b<c$.

Starting with $R_{0}=R$, construct R_{n} by induction as $R_{n+1}=\bar{R}_{n}$, and let $R_{\omega}=\bigcup R_{n}$. The congruence generated by R contains R_{1}, R_{2}, \ldots, and R_{ω}; hence R and R_{ω} are equivalent. Moreover, R_{ω} is ordered, hence terminating, and a wedge of R_{ω} contains only finitely many edges, is a wedge of some R_{n}, and can be completed to a diamond of R_{n+1}; hence R_{ω} is complete.
(c),(d) Given a complete presentation R, the proof of Theorem 2.4 of [9] first constructs a semi-reduced complete presentation R^{\prime} which is equivalent to R, by deleting some pairs from R (namely, all s such that $s^{\prime}=u r^{\prime} v$ for some $r \in R$ and $u, v \in F$ not both equal to 1). If R is ordered, then so is R^{\prime}. From R^{\prime} the second part of the proof then constructs a reduced complete presentation $R^{\prime \prime}$ which is equivalent to R^{\prime}, and hence to R, which consists of pairs (u, v) with a nontrivial path $u \longrightarrow v$ in R^{\prime} (namely, all pairs $\left(r^{\prime}, w\right)$ such that $r \in R^{\prime}$, there is a nontrivial path $r^{\prime} \longrightarrow w$, and w is irreducible); if R^{\prime} is ordered then so is $R^{\prime \prime}$.

Parts (a), (c), and (d) hold verbatim for finite presentations [9], but not part (b): it is not true that every finite ordered presentation is equivalent to a finite complete ordered presentation; [9] provides a counterexample.
3. We now let R be a semi-reduced complete presentation and obtain Squier's resolution

$$
M_{3}^{\prime} \xrightarrow{\partial_{3}} M_{2} \xrightarrow{\partial_{2}} M_{1} \xrightarrow{\partial_{1}} M_{0} \xrightarrow{\epsilon} \mathbb{Z}
$$

from a suitable submodule M_{3}^{\prime} of M_{3}.
An essential wedge is a wedge $a \xrightarrow{1, r, v} b, a \xrightarrow{u, s, 1} c$, with $r, s \in \mathcal{R}$, $u, v \in F, r^{\prime}=u t, s^{\prime}=t v$ for some $t \in F, t \neq 1$, and $u, v \neq 1$ in case $r=s ;$ then $a=r^{\prime} v=u s^{\prime}=u t v$ is an essential word. For each essential wedge $a \longrightarrow b, a \longrightarrow c$ we choose any one diamond $a \longrightarrow b \longrightarrow d, a \longrightarrow c \longrightarrow d$ (for instance, with d irreducible, as in [9]). An essential diamond is one of these chosen diamonds. Thus every essential wedge can be completed
to an essential diamond. The two paths $a \longrightarrow b \longrightarrow d, a \longrightarrow c \longrightarrow d$ in an essential diamond are an essential pair of paths. M_{3}^{\prime} is the submodule of M_{3} (freely) generated by all essential pairs $[P, Q]$ of paths. (As before one may further assume that $[P, P]=0$ and $[Q, P]=-[P, Q]$.)

Lemma 2.2. When R is a semi-reduced complete presentation, $\partial_{3}\left(M_{3}^{\prime}\right)=$ Ker ∂_{2}.

Proof. By Lemma 1.3 it suffices to show that
(*) $\tau Q-\tau P \in \partial_{3}\left(M_{3}^{\prime}\right)$
for every coterminal paths P, Q. We note the following:
(a) $\left(^{*}\right)$ holds for every essential diamond, by definition of M_{3}^{\prime}.
(b) if $\left(^{*}\right)$ holds for P and Q, then $\left(^{*}\right)$ holds for $T+P$ and $T+Q$, for $P+U$ and $Q+U$, and for $u P v$ and $u Q v$;
(c) c if in the diagram of paths

$\left(^{*}\right)$ holds for the two inner diamonds, then $\left(^{*}\right)$ holds for the outer diamond.
Claim 1. Every wedge $a \xrightarrow{p, r, q} b, a \xrightarrow{u, s, v} c$ of simple paths can be completed to a diamond for which $\left(^{*}\right)$ holds. We have $a=p r^{\prime} q=u s^{\prime} v$, so that r^{\prime} and s^{\prime} are subwords of a. If $r=s$, then we may assume that $p \neq u$ and $q \neq v$, otherwise $b=c$ and adding trivial paths $a \xrightarrow{p, r, q} b \longrightarrow b$, $a \xrightarrow{u, s, v} b \longrightarrow b$ yields a diamond for which $\left(^{*}\right)$ holds.

If the subwords r^{\prime} and s^{\prime} do not overlap in a, say, $a=p r^{\prime} t s^{\prime} v$ for some $t \in F$, there is a diamond $a \xrightarrow{p, r, t s^{\prime} v} b \xrightarrow{p r^{\prime \prime} t, s, v} d, a \xrightarrow{p r^{\prime} t, s, v} c \xrightarrow{p, r, t s^{\prime \prime} v} d$, where $d=p r^{\prime \prime} t s^{\prime \prime} v$, for which $\left(^{*}\right)$ holds: with $P=p r t s^{\prime} v+p r^{\prime \prime} t s v$, $Q=p r^{\prime} t s v+p r t s^{\prime \prime} v$ we have

$$
\tau Q-\tau P=p \overline{r^{\prime}} t[s]+\bar{p}[r]-\bar{p}[r]-p \overline{r^{\prime \prime}} t[s]=0
$$

since $p \bar{r}^{\prime} t=p \overline{r^{\prime \prime}} t$ in S.
Now assume that the subwords r^{\prime} and s^{\prime} overlap in a. Since R is semireduced, neither of r^{\prime}, s^{\prime} is a proper subword of the other. Hence the end of one overlaps the beginning of the other. Let $t \neq 1$ be the common part. If the end of r^{\prime} overlaps the beginning of s^{\prime}, then $r^{\prime}=h t, s^{\prime}=t k$, $u=p h, q=k v, a=p h t k v$; if $r=s$, then $h, k \neq 1$, since in that case we may assume that $p \neq u$ and $q \neq v$. Then $h t k \xrightarrow{1, r, k} r^{\prime \prime} k, h t k \xrightarrow{h, s, 1} h s^{\prime \prime}$ is an essential wedge, and can be completed to an essential diamond $h t k \xrightarrow{1, r, k} r^{\prime \prime} k \xrightarrow{P^{\prime \prime}} d, h t k \xrightarrow{h, s, 1} h s^{\prime \prime} \xrightarrow{Q^{\prime \prime}} d$. Hence the given wedge $a \xrightarrow{p, r, q} b, a \xrightarrow{u, s, v} c$, in which $q=k v, b=p r^{\prime \prime} k v, u=p h, c=p h s^{\prime \prime} v$, and $a=p h t k v$, can be completed to a diamond $p h t k v \xrightarrow{p, r, k v} p r^{\prime \prime} k v \xrightarrow{p P^{\prime \prime} v} p d v$, $p h t k v \xrightarrow{p h, s, v} p h s^{\prime \prime} v \xrightarrow{p Q^{\prime \prime} v} p d v$ for which $\left(^{*}\right)$ holds by (b), since it holds for the essential diamond. The case where the end of s^{\prime} overlaps the beginning of r^{\prime} is similar.

Claim 2. $\left(^{*}\right)$ holds for all paths $a \xrightarrow{P} w$ and $a \xrightarrow{Q} w$ where w is irreducible. This is proved by artinian induction on a, the induction hypothesis being that $\left(^{*}\right)$ holds for all paths $b \longrightarrow w$ and $b \longrightarrow w$ where w is irreducible and b is lower than $a(=$ there is a nontrivial path $a \longrightarrow b)$. If P is trivial, then $a=w, Q$ is trivial (otherwise there is an infinite sequence $a \xrightarrow{Q} a \xrightarrow{Q} a \ldots$ of nontrivial paths), and $\tau Q-\tau P=0-0=0$. Similarly $\left(^{*}\right)$ holds if Q is trivial. We may now assume that P and Q are nontrivial, and are the paths in a diamond $a \xrightarrow{p, r, q} b \xrightarrow{P^{\prime}} w, a \xrightarrow{u, s, v} c \xrightarrow{Q^{\prime}} w$ in which $a \longrightarrow b, a \longrightarrow c$ are simple paths and P^{\prime}, Q^{\prime} are shorter that P and Q. By the above there is a diamond $a \xrightarrow{p, r, q} b \xrightarrow{P^{\prime \prime}} d, a \xrightarrow{u, s, v} c \xrightarrow{Q^{\prime \prime}} d$ for which $\left(^{*}\right)$ holds. Since R is complete there is a path $d \xrightarrow{W} w$: indeed there is a path $d \longrightarrow w^{\prime}$ where w^{\prime} is irreducible; this yields two paths $b \xrightarrow{P^{\prime}} w$ and $b \xrightarrow{P^{\prime \prime}} d \xrightarrow{W} w^{\prime}$, and implies $w^{\prime}=w$. In the diagram

in which the two $w \longrightarrow w$ paths are trivial, $\left(^{*}\right)$ holds for every inner
diamond, by the induction hypothesis; by (c), $\left(^{*}\right)$ holds for the given outer diamond.

With Claim 2 we now show that $\left({ }^{*}\right)$ holds for all coterminal connecting sequences $a \xrightarrow{P} b$ and $a \xrightarrow{Q} b$. Any connecting sequence $a \xrightarrow{P} b$ can be analyzed into a sequence

of possibly trivial paths whose directions alternate; that is,

$$
P=-P_{1}+Q_{1}-P_{2}+Q_{2} \cdots-P_{n}+Q_{n}
$$

As above there are paths $a_{i} \xrightarrow{W_{i}} w$ to the same irreducible element w. By Claim 2, $\left(^{*}\right.$) holds for $c_{i} \xrightarrow{P_{i}} a_{i-1} \xrightarrow{W_{i-1}} w$ and $c_{i} \xrightarrow{Q_{i}} a_{i} \xrightarrow{W_{i}} w$. Hence

$$
\tau Q_{i}+\tau W_{i}-\tau P_{i}-\tau W_{i-1} \in \partial_{3}\left(M_{3}^{\prime}\right)
$$

Adding from $i=1$ to $i=n$ yields
$\tau P-\tau W_{0}+\tau W_{n}=-\tau P_{1}+\tau Q_{1} \cdots-\tau P_{n}+\tau Q_{n}-\tau W_{0}+\tau W_{n} \in \partial_{3}\left(M_{3}^{\prime}\right)$.
If now Q is another path from a to b, then $\tau Q-\tau W_{0}+\tau W_{n} \in \partial_{3}\left(M_{3}^{\prime}\right)$; hence $\tau Q-\tau P \in \partial_{3}\left(M_{3}^{\prime}\right)$ and $\left(^{*}\right)$ holds for P and Q.

Since M_{0}, M_{1}, M_{2}, and M_{3}^{\prime} are free $\mathbb{Z}[S]$-modules, Lemmas 1.1, 1.2, 2.2 yield

Theorem 2.3. When R is a semi-reduced complete presentation, $M_{3}^{\prime} \longrightarrow$ $M_{2} \longrightarrow M_{1} \longrightarrow M_{0} \longrightarrow \mathbb{Z}$ is a partial projective resolution of the trivial \S-module \mathbb{Z}.

3. Cochains

1. Let $R \subseteq F \times F$ be a presentation of a monoid S and A be an \S module. For $n \leq 2$ a minimal n-cochain with values in A is an \S-homomorphism $U: M_{n} \longrightarrow A$. (Minimal 2-cochains are functions of one variable and are called minimal 1-cochains in [2], [3], [4].) The coboundary of $U: M_{n} \longrightarrow A$ is $\delta U=U \circ \partial_{n+1}$. Under pointwise addition, minimal n-cochains, cocycles, and coboundaries constitute abelian groups $M C^{n}(R, A) \supseteq M Z^{n}(R, A) \supseteq M B^{n}(R, A)$. By Theorem 1.4,

$$
H^{n}(S, A) \cong E x t_{\mathbb{Z}[S]}^{n}(\mathbb{Z}, A) \cong M Z^{n}(R, A) / M B^{n}(R, A)
$$

by isomorphisms which are natural in A.
Since M_{n} is free, there is an isomorphism $U \longmapsto \widehat{U}$ which is natural in A and sends a mapping U of the set of generators of M_{n} to the minimal n-cochain \widehat{U} with the same value on every generator.

This isomorphism $M C^{0}(R, A) \cong A$ takes $M Z^{0}(R, A)$ to $B=\{a \in$ $A \mid s a=a$ for all $s \in S\}$, so that $H^{0}(S, A) \cong A / B$, as with the bar resolution.

For 1-cochains, recall that a crossed homomorphism is a mapping $U: S \longrightarrow A$ such that $U(s t)=U(s)+s U(t)$ for all $s, t \in S$. For every $a \in A, a^{\prime}: s \longmapsto s a-a$ is a crossed homomorphism.

Proposition 3.1. Up to isomorphisms which are natural in A, a minimal 1-cochain is a mapping of X into A; a minimal 1-cocycle is a crossed homomorphism of S into A; and a minimal 1-coboundary is a crossed homomorphism of the form $s \longmapsto s a-a$ for some $a \in A$.

Proof. A minimal 1-cochain is a homomorphism $\widehat{U}: M_{1} \longrightarrow A$ induced by a mapping U of X into A, so that $\widehat{U}[x]=U(x)$. Then

$$
\delta \widehat{U}[r]=\widehat{U}\left(\partial_{2}[r]\right)=\widehat{U}\left(\xi r^{\prime}-\xi r^{\prime \prime}\right)
$$

If \hat{U} is a minimal 1-cocycle, then $\widehat{U}\left(\xi r^{\prime}\right)=\widehat{U}\left(\xi r^{\prime \prime}\right)$ for every $r \in R$. Since $\xi(p q)=\xi(p)+\bar{p} \xi(q)$ for all $p, q \in F$, it follows that $\widehat{U}(p)=\widehat{U}(q)$ whenever $p \sim q$. Hence \widehat{U} induces a mapping $U^{\prime}: S \longrightarrow A$, which is well defined by: $U^{\prime}(\bar{p})=\widehat{U}(\xi p)$ for all $a \in F$. Then U^{\prime} is a crossed homomorphism, since $\xi(p q)=\xi(p)+\bar{p} \xi(q)$ for all $p, q \in F$, and uniquely determines \widehat{U}, by $\widehat{U}[x]=U^{\prime}(\bar{x})$.

If \widehat{U} is a coboundary, $\widehat{U}=\delta \hat{a}$ for some $a \in A$, then $\widehat{U} s[x]=\hat{a} \partial_{1} s[x]=$ $\hat{a}(s \bar{x}-s)=s \bar{x} a-s a$; hence

$$
\begin{aligned}
\widehat{U} \xi\left(x_{1} \ldots x_{n}\right) & =\widehat{U}\left(\sum_{1 \leq i \leq n} x_{1} \ldots x_{i-1}\left[x_{i}\right]\right) \\
& =\sum_{1 \leq i \leq n}\left(x_{1} \ldots x_{i-1} \bar{x}_{i} a-x_{1} \ldots x_{i-1} a\right)=x_{1} \ldots x_{n} a-a
\end{aligned}
$$

and $U^{\prime}(s)=s a-a$ for all $s=x_{1} \ldots x_{n} \in S$.
A minimal 2-cochain is a homomorphism $\widehat{V}: M_{2} \longrightarrow A$ induced by a mapping V of R into A, so that $\widehat{V}[r]=V(r)$. If P is a connecting sequence in F, consisting of sequences $a_{0}, a_{1}, \ldots, a_{n}, u_{1}, \ldots, u_{n}, v_{1}, \ldots$, $v_{n} \in F$ and $r_{1}, \ldots, r_{n} \in R$, let

$$
\begin{equation*}
V(P)=\widehat{V}(\tau P)=\sum_{1 \leq i \leq n} \epsilon_{i} \bar{u}_{i} V\left(r_{i}\right) \tag{16}
\end{equation*}
$$

where $\epsilon_{i}=+1$ if $a_{i-1}=u_{i} r_{i}^{\prime} v_{i}, a_{i}=u_{i} r_{i}^{\prime \prime} v_{i}, \epsilon_{i}=-1$ if $a_{i-1}=u_{i} r_{i}^{\prime \prime} v_{i}$, $a_{i}=u_{i} r_{i}^{\prime} v_{i}\left(\epsilon_{i}=+1\right.$ for a path). V is independent of path if $V(P)=V(Q)$ whenever P and Q are coterminal.

Proposition 3.2. Up to isomorphisms which are natural in A, a minimal 2-cochain is a mapping of R into A; a minimal 2-cocycle is a mapping of R into A which is independent of path; a minimal 2-coboundary is a mapping of R into A of the form $V(r)=\widehat{U}\left(\xi r^{\prime}\right)-\widehat{U}\left(\xi r^{\prime \prime}\right)$ for some mapping $U: X \longrightarrow A$.

By (2),

$$
\begin{equation*}
\widehat{U} \xi\left(x_{1} \ldots x_{n}\right)=\sum_{1 \leq i \leq n} x_{1} x_{2} \ldots x_{i-1} U\left(x_{i}\right) \tag{17}
\end{equation*}
$$

Very similar characterizations of minimal cocycles and coboundaries are given in [2] and [3].

Proof. When V is a minimal 2-cochain and P, Q are coterminal chains,

$$
\delta \widehat{V}[P, Q]=\widehat{V} \partial_{3}[P, Q]=\widehat{V}(\tau Q-\tau P)=V(Q)-V(P)
$$

by (16); therefore \widehat{V} is a minimal 2-cocycle if and only if V is independent of path. If furthermore \widehat{U} is a minimal 2-cochain, then

$$
\delta \widehat{U}[r]=\widehat{U} \partial_{2}[r]=\widehat{U}\left(\xi r^{\prime}-\xi r^{\prime \prime}\right)=\widehat{U}\left(\xi r^{\prime}\right)-\widehat{U}\left(\xi r^{\prime \prime}\right)
$$

Proposition 3.3. If R is semi-reduced and complete, then V is independent of path if and only if $V(P)=V(Q)$ whenever P, Q is an essential pair of paths.

Proof. By Lemma 2.2, $\widehat{V} \partial_{3}[P, Q]=0$ for all coterminal pairs $[P, Q]$ (generators of M_{3}) if and only if $\widehat{V} \partial_{3}[P, Q]=0$ for all essential pairs $[P, Q]$ (generators of M_{3}^{\prime}).

If R is finite in Proposition 3.3, then there are only finitely many essential words, essential diamonds, and essential pairs, so that minimal 2-cocycles are characterized by finitely many conditions. It is easy to devise an algorithm which yields all these conditions.

4. Examples

1. Example 1 is the finite cyclic monoid $C=\left\langle c \mid c^{m}=c^{m+n}\right\rangle$ of index $m \geq 0$ and period $d>0$; for instance, a cyclic group of order d. (Infinite cyclic monoids and groups have $H^{2}(C, A)=0$ for all A.)

In this example F is free on $X=\{c\}$, with $\bar{c}=c$, and $\mathcal{R}=\{r\}$, where $r=\left(c^{m+d}, c^{m}\right)$. A minimal 2-cochain $\widehat{V} \in M C^{1}(F, A)$ may be identified with $V(r)$; this identifies $M C^{2}(R, A)$ with A.

If $p \longrightarrow q$ and $p \longrightarrow t$ are simple paths, then $p=c^{n}$, where $n \geq$ $m+d$, and $q=t=c^{n-d}$. Therefore we have a complete and reduced presentation.

Let $V=V(r) \in A$. An essential word $p=u t v$ has $u=c^{i}, t=c^{j} \neq 1$, $v=c^{k}, r^{\prime}=u t, s^{\prime}=t v$, and $u, v \neq 1$ if $r=s$; hence $i, j, k>0$, $i+j=j+k=m+d$, and $i=k=m+d-j$, where $0<i, j, k<m+d$. An essential diamond consists of an essential wedge $c^{i+m+d} \xrightarrow{1, r, c^{i}} c^{i+m}$ and $c^{i+m+d} \xrightarrow{c^{i}, r, 1} c^{i+m}$, followed by paths $c^{i+m} \xrightarrow{R} d$ and $c^{i+m} \xrightarrow{S} d$. We may choose $d=c^{i+m}$ and trivial paths $c^{i+m} \xrightarrow{R} d$ and $c^{i+m} \xrightarrow{S} d$; then the paths in the diamond are $r c^{i}$ and $c^{i} r$. Hence V is a cocycle if and only if $V(r)=\bar{c}^{i} V(r)=c^{i} V(r)$ for all $0<i<m+d$, if and only if $V=c V$. Thus

$$
M Z^{2}(R, A)=A_{c}=\{a \in A \mid c a=a\}
$$

If C acts trivially on A (if $g a=a$ for all $g \in G$ and $a \in A$), then $M Z^{2}(R, A)=A_{c}=A$.

Minimal 1-cochains may also be identified with elements of A. If $a=U(c) \in A$, then $\widehat{U}\left(\xi c^{k}\right)=\sum_{1 \leq i \leq k} \bar{c}^{i-1} a=\sum_{1 \leq i \leq k} c^{i-1} a$ by (17) and

$$
\begin{aligned}
(\delta a)(r) & =\bar{a}\left(r^{\prime}\right)-\bar{a}\left(r^{\prime \prime}\right)=\sum_{1 \leq i \leq m+d} c^{i-1} a-\sum_{1 \leq i \leq m} c^{i-1} a \\
& =\sum_{m+1 \leq i \leq m+d} c^{i-1} a=c^{m} \sum_{1 \leq i \leq d} c^{i-1} a
\end{aligned}
$$

Hence

$$
M B^{2}(R, A)=B=\left\{c^{m} \sum_{1 \leq i \leq d} c^{i-1} a \mid a \in A\right\}
$$

If C acts trivially on A, then $B=d A=\{d a \mid a \in A\}$. This yields the well known result:
Proposition 4.1. When $C=\left\langle c \mid c^{m}=c^{m+d}\right\rangle$ is a finite cyclic monoid, or C is a cyclic group of order d, then

$$
H^{2}(G, A) \cong A_{c} / B
$$

where $A_{c}=\{a \in A \mid c a=a\}$ and $B=\left\{c^{m} \sum_{1 \leq i \leq d} c^{i-1} a \mid a \in A\right\}$. If C acts trivially on A, then $H^{2}(C, A) \cong A / d A$.

When C is a cyclic group, comparable results hold in higher dimensions [6], [1].
2. Example $\mathbf{2}$ is the bicyclic semigroup, which has the monoid presentation $G=\langle p, q \mid p q=1\rangle$.
F is free on $X=\{p, q\}$, with $\bar{p}=p, \bar{q}=q$, and $\mathcal{R}=\{r\}$, where $r=(p q, 1) ; M C^{2}(R, A)$ may be identified with A.

Since $p q$ cannot overlap itself, there are no essential words and no essential diamonds. R is a complete, reduced presentation, and every minimal 2-cochain is a minimal 2-cocycle.

When $U:\{p, q\} \longrightarrow A$,

$$
\delta \widehat{U}[r]=\widehat{U} \xi(p q)-\widehat{U} \xi(1)=U(p)+p U(q)
$$

by (18) and (17); if we identify $M C^{2}(R, A)$ with A, then $M B^{2}(R, A)=$ $A+p A=A$. Hence:

Proposition 4.2. When S is the bicyclic semigroup, $H^{2}(S, A)=0$ for all A.
3. Example 3 is the free commutative monoid $S=\langle c, d \mid c d=d c\rangle$.
F is free on $X=\{c, d\}$, with $\bar{c}=c, \bar{d}=d$; we let $\mathcal{R}=\{r\}$, where $r=(d c, c d) ; M C^{2}(R, A)$ may be identified with A.
R is complete, with every path ending when all c 's precede all d 's. Since $d c$ cannot overlap itself, there are no essential words and no essential diamonds; R is reduced, and every minimal 2 -cochain is a minimal 2 cocycle.

When $U:\{c, d\} \longrightarrow A$,

$$
\delta \widehat{U}[r]=\widehat{U} \xi(d c)-\widehat{U} \xi(c d)=U(d)+d U(c)-U(c)-c U(d)
$$

if we identify $M C^{2}(R, A)$ with A, then $M B^{2}(R, A)=A(c)+A(d)$, where $A(c)=\{a-c a \mid a \in A\}$ and $A(d)=\{a-d a \mid a \in A\}$. If S acts trivially on A, then $A(c)=A(d)=0$. We have proved:

Proposition 4.3. When S is the free commutative monoid $S=\langle c, d|$ $c d=d c\rangle$, then

$$
H^{2}(S, A) \cong A /(A(c)+A(d))
$$

where $A(c)=\{a-c a \mid a \in A\}$ and $A(d)=\{a-d a \mid a \in A\}$. If S acts trivially on A, then $H^{2}(S, A) \cong A$.

On the other hand, in the commutative cohomology, $H^{n}(S, A)=0$ for every abelian group valued functor A and $n \geq 2$ [2].
4. Example 4 is the monoid freely generated by two idempotents, $S=\left\langle e, f \mid e^{2}=e, f^{2}=f\right\rangle$.
F is free on $S=\{e, f\}$, with $\bar{e}=e, \bar{f}=f$, and $\mathcal{R}=\{r, s\}$, where $r=(e e, e)$ and $s=(f f, f)$. Minimal 2-cochains have two values $M(r)$ and $M(s)$, and $M C^{2}(F, A) \cong A \oplus A$.

Since $e e$ and $f f$ can only overlap themselves, there are two essential words eee and $f f f$. This yields two essential wedges, four essential diamonds, and four essential pairs of paths:

$$
\begin{gathered}
e e e \xrightarrow{1, r, e} e e \xrightarrow{1, r, 1} e, \text { eee } \xrightarrow{e, r, 1} e e \xrightarrow{1, r, 1} e ; \\
e e e \xrightarrow{1, r, e} e e \longrightarrow e, \text { eee } \xrightarrow{e, r, 1} e e \longrightarrow e e \\
f f f \xrightarrow{1, s, f} f f \xrightarrow{1, s, 1} f, f f f \xrightarrow{f, s, 1} f f \xrightarrow{1, r, 1} f ; \\
f f f \xrightarrow{1, s, f} f f \longrightarrow f f, f f f \xrightarrow{f, s, 1} f f \longrightarrow f f .
\end{gathered}
$$

In particular, R is complete. By 3.3, a minimal 2 -cochain V is a minimal 2-cocycle if and only if it $V(P)=V(Q)$ for every essential pair $[P, Q]$. This yields four conditions:

$$
\begin{aligned}
V(r)+V(r) & =e V(r)+V(r) \\
V(r) & =e V(r) \\
V(s)+V(s) & =f V(s)+V(s) \\
V(s) & =f V(s)
\end{aligned}
$$

equivalently, $V(r)=e V(r)$ and $V(s)=f V(s)$. If we identify, $C^{1}(F, A)$ with $A \oplus A$, then $M Z^{1}(F, A)=A_{e} \oplus A_{f}$, where $A_{e}=\{a \in A \mid e a=a\}$, $A_{f}=\{a \in A \mid f a=a\}$.

When $U:\{e, f\} \longrightarrow A$,

$$
\delta \widehat{U}[r]=\widehat{U} \xi(e e)-\widehat{U} \xi(e)=U(e)+e U(e)-U(e)=e U(e)
$$

and $\delta \widehat{U}[s]=f U(f)$. If we identify $M C^{2}(R, A)$ with $A \oplus A$, then

$$
M Z^{1}(R, A)=e A \oplus f A
$$

Since $e^{2}=e$ holds in S, eea $=e a$ for all $a \in A$, and $A_{e}=e A$; similarly $A_{f}=f A$. Hence $M Z^{2}(R, A)=M B^{2}(R, A)$. Thus:

Proposition 4.4. When $S=\left\langle e, f \mid e^{2}=e, f^{2}=f\right\rangle$, then $H^{2}(S, A)=0$ for all A.
5. Example 5 is the free Burnside monoid $S=M_{2,1,1}$, that is, the free band-with-identity-element on two generators e and f. The multiplication table of S is:

$$
\begin{array}{|ccccccc}
\hline 1 & e & f & \text { ef } & \text { fe } & \text { efe } & \text { fef } \\
e & e & \text { ef } & \text { ef } & \text { efe } & \text { efe } & \text { ef } \\
f & \text { fe } & f & \text { eef } & \text { fe } & \text { fe } & \text { fef } \\
\text { ef } & \text { efe } & \text { ef } & \text { ef } & \text { efe } & \text { efe } & \text { ef } \\
\text { fe } & \text { fe } & \text { fef } & \text { fef } & \text { fe } & \text { fe } & \text { fef } \\
\text { efe } & \text { efe } & \text { ef } & \text { ef } & \text { efe } & \text { efe } & \text { ef } \\
\text { fef } & \text { fe } & \text { fef } & \text { fef } & \text { fe } & \text { fe } & \text { fef }
\end{array}
$$

S has a finite presentation $S=\langle e, f| e e=e, f f=f$, efef $=e f, f e f e=$ $f e\rangle$, which we show is complete.

As in Example 4, F is free on $X=\{e, f\}$, with $\bar{e}=e, \bar{f}=f$. Then $\mathcal{R}=\{r, s, t, u\}$, where $r=(e e, e), s=(e f e f, e f), t=(f e f e, f e)$, and $u=(f f, f)$ (arranged so the left hand sides are in alphabetic order). Minimal 2-cochains have four values and $M C^{2}(F, A) \cong A \oplus A \oplus A \oplus A$.

Overlaps in the left hand sides yield 12 essential words:

	ee	efef	fefe	ff
ee	eee	eefef	-	-
efef	-	efefef	efefe,efefefe	efeff
fefe	fefee	fefef,fefefef	fefefe	-
ff	-	-	ffefe	fff

This yields all essential diamonds:

1. eee : eee $\xrightarrow{1, r, e} e e \xrightarrow{1, r, 1} e, \quad e e e \xrightarrow{e, r, 1} e e \xrightarrow{1, r, 1} e$.
2. eefef: eefef $\xrightarrow{1, r, \text { fef }}$ efef $\xrightarrow{1, s, 1}$ ef, eefef $\xrightarrow{e, s, 1}$ eef $\xrightarrow{1, r, f}$ ef.
3. efefef: efefef $\xrightarrow{1, s, \text { ef }}$ efef $\xrightarrow{1, s, 1}$ ef, efefef $\xrightarrow{\text { ef,s, } 1}$ efef $\xrightarrow{1, s, 1}$ ef.
4. efefe: efefe $\xrightarrow{1, s, e}$ efe \longrightarrow efe, efefe $\xrightarrow{e, t, 1}$ efe \longrightarrow efe.
5. efefefe: efefefe $\xrightarrow{1, s, e f e}$ efefe \longrightarrow efe, efefefe $\xrightarrow{\text { efe,t,1}}$ efefe \longrightarrow efe.
6. efeff: efeff $\xrightarrow{1, s, f}$ eff $\xrightarrow{e, u, 1}$ ef, efeff $\xrightarrow{\text { efe,u,1}}$ efef $\xrightarrow{1, s, 1}$ ef.
7. fefee: fefee $\xrightarrow{\frac{1, t, e}{\longrightarrow}} f e e \xrightarrow{f, r, 1} f e, \quad$ fefee $\xrightarrow{\text { fef,r,1}}$ fefe $\xrightarrow{1, t, 1} f e$.
8. fefef: fefef $\xrightarrow{1, t, f}$ fef \longrightarrow fef, fefef $\xrightarrow{f, s, 1}$ fef $\longrightarrow f$ f.
9. fefefef: fefefef $\xrightarrow{1, t, \text { fef }}$ fefef \longrightarrow fef, fefefef $\xrightarrow{\text { fef,s, } 1}$ fefef $\longrightarrow f e f$.
10. fefefe: fefefe $\xrightarrow{1, t, f e}$ fefe $\xrightarrow{1, t, 1} f e, \quad$ fefefe $\xrightarrow{\text { fe,t,1}}$ fefe $\xrightarrow{1, t, 1} f e$.
11. ffefe: ffefe $\xrightarrow{1, u, e f e} f e f e \xrightarrow{1, t, 1} f e, \quad$ ffefe $\xrightarrow{f, t, 1} f f e \xrightarrow{1, u, e} f e$.
12. fff: $\quad f f f \xrightarrow{1, u, f} f f \xrightarrow{1, u, 1} f, \quad \quad f f f \xrightarrow{f, u, 1} f f \xrightarrow{1, u, 1} f$

In this list, efefe $\longrightarrow e f e$ stands for either of the two paths in the efefe entry, and similarly for fefef $\longrightarrow f e f$. In particular, every essential wedge can be completed to a diamond. Since R is reduced, the proof of 2.3 shows that every wedge can be completed to a diamond, and R is confluent. R is also terminating, since length decreases along every path.

The list above yields 12 equalities which by 3.3 characterize minimal 2-cocycles:
(1) $V(r)+V(r)=e V(r)+V(r)$;
(2) $V(r)+V(s)=e V(s)+V(r)$;
(3) $V(s)+V(s)=$ ef $V(s)+V(s)$;
(4) $V(s)=e V(t)$;
(5) $V(s)+V(s)=\operatorname{efe} V(t)+V(s)$;
(6) $V(s)+e V(u)=e f e V(u)+V(s)$;
(7) $V(t)+f V(r)=$ fef $V(r)+V(t)$;
(8) $V(t)=f V(s)$;
(9) $V(t)+V(t)=$ fef $V(s)+V(t)$;
(10) $V(t)+V(t)=$ fe $V(t)+V(t)$;
(11) $V(u)+V(t)=f V(t)+V(u)$;
(12) $V(u)+V(u)=f V(u)+V(u)$;
where efefe $\xrightarrow{1, s, e}$ efe, fefef $\xrightarrow{1, t, f} f e f$.
Equation (8) reads
(T) $\quad V(t)=f V(s)$
and shows that a minimal 1-cocycle is determined by its values on r, s, and u. The latter satisfy
(A) $\quad V(r)=e V(r)$ and $f V(r)=f e f V(r)$,
(B) $V(s)=e f V(s)$,
(C) $\quad V(u)=f V(u)$ and $e V(u)=e f e V(u)$
by (1) and (7), (2), (12) and (6) respectively. Conversely, (B) implies $e V(s)=V(s)$. since $\pi(e e f)=\pi(e f)$, and it is immediate that (1) through (12) follow from (A), (B), (C), and (T). Hence

$$
M Z^{1}(F, A) \cong A_{r} \oplus A_{s} \oplus A_{u}
$$

where $A_{r}=\{a \in A \mid a=e a, f a=f e f a\}, A_{s}=\{a \in A \mid a=e f a\}$, $A_{u}=\{a \in A \mid a=f a, e a=e f e a\} ;$ the isomorphism takes $V \in$ $M Z^{1}(F, A)$ to $(V(r), V(s), V(u))$. If G acts trivially on A, then

$$
M Z^{1}(F, A) \cong Z=A \oplus A \oplus A
$$

$$
\begin{aligned}
& \text { When } U:\{e, f\} \longrightarrow A \\
& \left.\begin{array}{rl}
\delta \widehat{U}[r] & =\widehat{U} \xi(e e)-\widehat{U} \xi(e)=U(e)+e U(e)-U(e)=e U(e) \\
\begin{array}{rl}
\delta \widehat{U}[s] & =\widehat{U} \xi(e f e f)-\widehat{U} \xi(e f) \\
& =U(e)+e U(f)+e f U(e)+e f e U(f)-U(e)-e U(f) \\
& =\text { ef } U(e)+e f e U(f) \\
\delta \widehat{U}[u] & =\widehat{U} \xi(f f)-\widehat{U} \xi(f)=U(f)+f U(f)-U(f)=f U(f)
\end{array}
\end{array} \begin{array}{rl}
&
\end{array}\right]
\end{aligned}
$$

then $\delta \widehat{U}$ is given by (T), since minimal 2-coboundaries are minimal 2cocycles. Hence the isomorphism $M Z^{2}(R, A) \longrightarrow Z$ sends $M B^{2}(R, A)$ to

$$
B=\{(e a, \text { ef } a+e f e b, f b) \mid a, b \in A\}
$$

If S acts trivially on A, then $B=\{(a, a+b, b) \mid a, b \in A\}$.
We note that $A_{r}=e A$: indeed $b=e a$ implies $b=e b$ and $f b=f e f b$, since $\pi(e e)=\pi(e)$ and $\pi(f e f e)=\pi(f e)$. Similarly $A_{u}=f A$ and $A_{s}=e f A$; hence $Z=e A \oplus e f A \oplus f A$. To find Z / B we note use the isomorphism

$$
\theta: A \oplus A \oplus A \longrightarrow A \oplus A \oplus A,(a, b, c) \longmapsto(a, b-e f e a-e f e f c, c)
$$

Then $\theta(Z)=Z$, since $b \in A_{s}(b=e f b)$ implies $b-e f e a-e f e f c \in A_{s}$. But $\theta(e a, e f a+e f e b, f b)=(e a, 0, f b)$, so that $\theta(B)=e A \oplus 0 \oplus f A$. Hence:

Proposition 4.5. When S is the free band-with-identity-element with two generators e and $f, H^{2}(S, A) \cong e f A$. If S acts trivially on A, then $H^{2}(S, A) \cong A$.

Note that ef $A \cong f e A: x \longmapsto f x$ and $y \longmapsto e y$ provide mutually inverse isomorphisms.

References

[1] Brown, K., Cohomology of groups, Springer-Verlag, New York, 1982.
[2] Grillet, P.A., Commutative semigroups, Kluwer Acad. Publ., Dordrecht, 2001.
[3] Grillet, P.A., The commutative cohomology of finite semigroups, J. Pure Appl. Algebra 102 (1995), 25-47.
[4] Grillet, P.A., The commutative cohomology of finite nilsemigroups, J. Pure Appl. Algebra 82 (1992), 233-251.
[5] Guba, V.S., and Pride, J.S., Low-dimensional (co)homology of free Burnside monoids, J. Pure Appl. Algebra 108 (1996) 61-79.
[6] MacLane, S., Homology, Springer-Verlag, New York, 1963.
[7] Novikov, B.V., The cohomology of semigroups: a survey (Russian), Fundam. Prikl. Mat. 7 (2001) 1-18.
[8] Novikov, B.V., Semigroup cohomologies and applications, Algebra - representation theory (Constanta, 2000), 219-234, Kluwer Acad. Publ., Dordrecht, 2001.
[9] Squier, C.C., Word problems and a homological finiteness condition for monoids, J. Pure Appl. Algebra 49 (1987) 201-217.

CONTACT INFORMATION

P. A. Grillet Tulane University, New Orleans, La., U.S.A.

Received by the editors: 11.03 .2004 and final form in 06.12.2004.

