C^{*}-algebra generated by four projections with sum equal to 2

Yuri Savchuk

Communicated by L. Turowska

Abstract. We describe the C^{*}-algebra generated by four orthogonal projections $p_{1}, p_{2}, p_{3}, p_{4}$, satisfying the linear relation $p_{1}+p_{2}+p_{3}+p_{4}=2 I$. The simplest realization by 2×2-matrixfunctions over the sphere S^{2} is given.

Introduction

In the present paper we consider a realization of a certain C^{*}-algebra A with irreducible representations of dimensions equal to 1 or 2 only, as a C^{*}-algebra of continuous matrix-functions over S^{2} with boundary conditions.
C^{*}-algebras with restriction on the dimensions of the irreducible representations are the object of intensive investigations, started from the works of Gelfand-Naimark, Fell, Tomiyama-Takesaki, Vasil'ev (see [4], [6], [7]).

An interesting fact is that the property for a C^{*}-algebra A to have irreducible representations of dimensions less or equal to n can be formulated in pure algebraic way. Let F_{n} denote the following polynomial of degree n in n non-commuting variables:

$$
F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}}(-1)^{p(\sigma)} x_{\sigma(1)} \ldots x_{\sigma(n)}
$$

2000 Mathematics Subject Classification: 46L05, 47L50.
Key words and phrases: matrix-functions, projections, finitely generated C^{*} algebras.
where S_{n} is the symmetric group of degree $n, p(\sigma)$ is the parity of a permutation $\sigma \in S_{n}$. We say that an algebra A is an algebra with F_{n} identity if for all $x_{1}, \ldots, x_{n} \in A$, we have $F_{n}\left(x_{1}, \ldots x_{n}\right)=0$. The Amitsur-Levitsky theorem says that the matrix algebra $M_{n}(\mathbb{C})$ is an algebra with $F_{2 n}$ identity. A C^{*}-algebra A has irreducible representations of dimension less or equal to n iff A satisfies the $F_{2 n}$ condition (see [5]).

One of the basic C^{*}-algebra classes with $F_{2 n}$ identity is the class of n homogeneous algebras. Recall, that an algebra is called n-homogeneous iff all its irreducible representations are of dimension n. Any n-homogeneous C^{*}-algebra can be described in terms of algebraic bundles, see [6] or [7]. It is also convenient to realize these algebras as algebras of continuous matrix-functions. For example, it was proved in [1], that one has exactly n pairwise non-isomorphic n-homogeneous C^{*}-algebras having the dual space S^{2} (see [1]). We will denote them by $A_{n, k}, k=\overline{0, n-1}$. Such algebras can be realized in the following way. Let $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ be the boundary of the unit disk D^{2} in the complex plane and consider

$$
V_{k}: S^{1} \longrightarrow U(n), z \mapsto \operatorname{diag}\left(z^{k}, 1, \ldots, 1\right), k=\overline{0, n-1} .
$$

Then

$$
A_{n, k}=\left\{f \in C\left(D^{2} \longrightarrow M_{2}(\mathbb{C})\right) \mid f(z)=V_{k}(z)^{*} f(1) V_{k}(z), z \in S^{1}\right\}
$$

Evidently, the dual space is homeomorphic to $D^{2} / S^{1} \simeq S^{2}$ (see [1] for more details).

An analogous realization of n-homogeneous algebra, having the twodimensional torus as the dual space, was presented in [2]. Namely, any such algebra is isomorphic to

$$
\begin{gathered}
B_{V, W}=\left\{g \in C\left([0,1]^{2} \longrightarrow M_{n}(\mathbb{C})\right) \mid g(0, s)=V^{*} g(1, s) V\right. \\
\left.g(t, 0)=W^{*} g(t, 1) W, s, t \in[0,1]\right\}
\end{gathered}
$$

where $V, W \in U(n)$ are some unitary matrices such that $V W V^{*} W^{*}$ is a scalar matrix.

Note, that concrete finitely generated $F_{2 n}$-algebras are mostly nonhomogeneous. Indeed, the group C^{*}-algebra of any non-commutative finite group satisfies the $F_{2 n}$ condition for some n, but it is not homogeneous. The group algebra of $G=\mathbb{Z}_{2} * \mathbb{Z}_{2}$ gives an example of F_{4} algebra corresponding to infinite discrete group. One can also generate $C^{*}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$ by the free pair of projections. Indeed, it is easy to see, that

$$
C^{*}\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)=C^{*}\left\langle p_{1}, p_{2} \mid p_{k}^{2}=p_{k}=p_{k}^{*}, k=1,2\right\rangle:=\mathcal{P}_{2} .
$$

A realization of \mathcal{P}_{2} as algebra of matrix-functions was constructed in [8].

Namely,

$$
\mathcal{P}_{2}=\left\{f \in C\left([0,1] \longrightarrow M_{2}(\mathbb{C})\right) \mid f(0), f(1) \text { are diagonal }\right\} .
$$

In this paper we study the C^{*}-algebra A generated by four projections (self-adjoint idempotents) $P_{1}, P_{2}, P_{3}, P_{4}$ satisfying the following relation:

$$
P_{1}+P_{2}+P_{3}+P_{4}=2 I
$$

The algebra A is an enveloping of the ${ }^{*}$-algebra:

$$
\widetilde{A}=\mathbb{C}\left\langle P_{i} \mid \sum_{i=1}^{4} P_{i}=2 I, P_{i}=P_{i}^{*}=P_{i}^{2}, i=1 \ldots 4\right\rangle
$$

In Theorem 1, we realize A as an algebra of continuous 2×2 matrixfunctions with some boundary conditions. In the theorem 2 we give the most simple of possible realizations of A.

1. Preliminaries

In this Section, for convenience of the reader, we recall some information used below.

Definition 1. Let \mathbf{A} be a ${ }^{*}$-algebra, having at least one representation. Then a pair (\mathcal{A}, ρ) of a C^{*}-algebra \mathcal{A} and a homomorphism $\rho: \mathbf{A} \longrightarrow$ \mathcal{A} is called an enveloping pair for \mathbf{A} if every irreducible representation $\pi: \mathbf{A} \longrightarrow B(H)$ factors uniquely through the \mathcal{A}, i.e. there is precisely one irreducible representation π_{1} of algebra \mathcal{A} satisfying $\pi_{1} \circ \rho=\pi$. The algebra \mathcal{A} is called an enveloping for \mathbf{A}.

The following statement is a simple corollary of the noncommutative analogue of the Stone-Weierstrass theorem for C^{*}-algebras (see Glimm-Stone-Weierstrass theorem in [4] or [7]).

Statement 1. Let Y be a compact Hausdorff space. Let $\mathcal{C} \subseteq \mathcal{B}$ be subalgebras of $\mathcal{A}=C\left(Y \longrightarrow M_{n}(\mathbb{C})\right)$. For every pair $x_{1}, x_{2} \in Y$ define $\mathcal{A}\left(x_{1}, x_{2}\right)$ ($\mathcal{B}\left(x_{1}, x_{2}\right), \mathcal{C}\left(x_{1}, x_{2}\right)$ respectively) as:

$$
\begin{aligned}
\mathcal{A}\left(x_{1}, x_{2}\right):=\left\{\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \in M_{n}(\mathbb{C}) \times\right. & M_{n}(\mathbb{C}) \mid f \in \mathcal{A} \\
& (f \in \mathcal{B}, f \in \mathcal{C} \text { respectively })\}
\end{aligned}
$$

Then

$$
\mathcal{B}=\mathcal{C} \Longleftrightarrow \mathcal{B}\left(y_{1}, y_{2}\right)=\mathcal{C}\left(y_{1}, y_{2}\right) \quad \forall y_{1}, y_{2} \in Y
$$

In the next section we will also need a classification of all irreducible representation of \widetilde{A} (see [5] for more details). Namely, irreducible representations are either 1-dimensional or 2-dimensional. The images of generators of \widetilde{A} in two-dimensional representations have the following form :

$$
\begin{aligned}
& P_{1}(a, b, c)=\frac{1}{2}\left(\begin{array}{cc}
1+a & -b-i c \\
-b+i c & 1-a
\end{array}\right), P_{2}(a, b, c)=\frac{1}{2}\left(\begin{array}{cc}
1-a & b-i c \\
b+i c & 1+a
\end{array}\right), \\
& P_{3}(a, b, c)=\frac{1}{2}\left(\begin{array}{cc}
1-a & -b+i c \\
-b-i c & 1+a
\end{array}\right), P_{4}(a, b, c)=\frac{1}{2}\left(\begin{array}{cc}
1+a & b+i c \\
b-i c & 1-a
\end{array}\right) .
\end{aligned}
$$

where $a^{2}+b^{2}+c^{2}=1$ and the space of parameters (a, b, c) corresponding to irreducible pairwise non-equivalent 2-dimensional representations is (a part of the unit sphere in \mathbb{R}^{3}):

$$
\begin{gathered}
P=\{(a, b, c) \mid a>0, b>0, c \in \mathbb{R}\} \bigcup\{(a, b, c) \mid a=0, b>0, c>0\} \bigcup \\
\bigcup\{(a, b, c) \mid a>0, b=0, c>0\}
\end{gathered}
$$

Note that when $(a, b, c) \in\{(1,0,0),(0,1,0),(0,0,1)\}$, the formulas for P_{k} give reducible representations of \widetilde{A}, moreover, any one-dimensional representation of \widetilde{A} can be obtained by decomposition of some of these reducible ones on irreducible components.

We will denote by \bar{P} the closure of P in \mathbb{R}^{3}. Evidently

$$
\bar{P}=\left\{(a, b, c) \mid a^{2}+b^{2}+c^{2}=1, a \geq 0, b \geq 0\right\}
$$

2. The structure of enveloping C^{*}-algebra

In this section we give a description of the enveloping C^{*}-algebra A of \tilde{A}. Theorem 1 realizes A by matrix-functions, and Theorem 2 gives the simplest of all descriptions for A.

Theorem 1. Let

$$
\begin{gathered}
X=\left\{(x, y)\left|(x, y) \in \mathbb{R}^{2},|x|+|y| \leq 1\right\}, V=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), W=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\right. \\
A_{0}=\left\{f \in C\left(X \longrightarrow M_{2}(\mathbb{C})\right) \mid f(t, 1-t)=V f(-t, 1-t) V\right. \\
f(t, t-1)=W f(-t, t-1) W, t \in[0,1]\}
\end{gathered}
$$

then $A \simeq A_{0}$.
Proof. Consider the functions $P_{i}=P_{i}(a, b, c), i=\overline{1,4}$ naturally corresponding to generators P_{i} defined on \bar{P}. Let $\widehat{A} \subseteq C\left(\bar{P} \longrightarrow M_{2}(\mathbb{C})\right)$ be
the C^{*}-algebra generated by P_{i}. It is easy to check, that \widehat{A} is an enveloping C^{*}-algebra of \widetilde{A}, i.e. A. Indeed, we have homomorphism of \widetilde{A} into \widehat{A}, which satisfies the universal property, so \widehat{A} is enveloping algebra by Definition 1. We will show, that \widehat{A} coincides with

$$
\begin{gathered}
\bar{A}=\left\{f \in C\left(\bar{P} \rightarrow M_{2}(\mathbb{C})\right) \mid V f(s, 0, t) V=f(s, 0,-t),\right. \\
\left.W f(0, s, t) W=f(0, s,-t), s^{2}+t^{2}=1\right\}
\end{gathered}
$$

To do so we apply Statement 1.
Let us check that $\widehat{A} \subseteq \bar{A}$. Indeed, it is easy to check, that P_{i} satisfy the boundary conditions from the definition of \bar{A}, so we have $P_{i} \in \bar{A}$.

The fact, that P is space of pairwise non-equivalent irreducible representations insures that:

$$
\widehat{A}\left(x_{1}, x_{2}\right)=\bar{A}\left(x_{1}, x_{2}\right)=M_{2}(\mathbb{C}) \times M_{2}(\mathbb{C}), \forall x_{1}, x_{2} \in P
$$

and automatically:

$$
\widehat{A}\left(x_{1}, x_{2}\right)=\bar{A}\left(x_{1}, x_{2}\right) \subset M_{2}(\mathbb{C}) \times M_{2}(\mathbb{C}), \forall x_{1}, x_{2} \in \bar{P}
$$

So, by Statement 1 we have $\widehat{A}=\bar{A}$.
Choose a homeomorphism between \bar{P} and X which maps the points $(1,0,0),(0,0, \pm 1),(0,1,0) \in \bar{P}$ to the points $(0,1),(\pm 1,0),(0,-1) \in X$, correspondingly. This homeomorphism induces the isomorphism between \bar{A} and A_{0}.

Remark. It is easy to show that this theorem implies that the space of primitive ideals of algebra A is the same as for algebra of all continuous matrix-functions on the sphere S^{2} having values in diagonal matrix in three fixed points. It turns out that A is isomorphic to such an algebra.

Theorem 2. Let

$$
B=\left\{f \in C\left(S^{2} \longrightarrow M_{2}(\mathbb{C})\right) \mid f\left(x_{i}\right) \in B_{i} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}), i=1,2,3\right\}
$$

where x_{1}, x_{2}, x_{3} are fixed points of the sphere S^{2}, then $A \simeq B$.
Proof. We will prove this theorem in a few steps, sequently building different realizations of A.
I. It is easy to see, that the algebra A_{0} is isomorphic to the algebra A_{1}, where

$$
\begin{gathered}
A_{1}=\left\{\left(f_{1}, f_{2}\right) \mid f_{1}, f_{2} \in C\left(X_{1} \longrightarrow M_{2}(\mathbb{C})\right), f_{1}(s, 0)=f_{2}(s, 0), s \in[-1,1]\right. \\
\left.V f_{1}(t, 1-t) V=f_{1}(-t, 1-t), W f_{2}(t, 1-t) W=f_{2}(-t, 1-t), t \in[0,1]\right\} \\
X_{1}=\left\{(x, y)\left|(x, y) \in \mathbb{R}^{2},|x|+y \leq 1, y \geq 0\right\}\right.
\end{gathered}
$$

(the norm on the algebra A_{1} is natural: $\left\|\left(f_{1}, f_{2}\right)\right\|=\max \left(\left\|f_{1}\right\|,\left\|f_{2}\right\|\right)$).
The boundary conditions for A_{1} imply that:

$$
\begin{gathered}
f_{1}(0,1) \in\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\right\}_{a, b \in \mathbb{C}}, f_{2}(0,1) \in\left\{\left(\begin{array}{ll}
c & d \\
d & c
\end{array}\right)\right\}_{c, d \in \mathbb{C}} \\
f_{1}(1,0)=f_{2}(1,0)=V f_{1}(-1,0) V=W f_{2}(-1,0) W \in\left\{\left(\begin{array}{cc}
e & f \\
-f & e
\end{array}\right)\right\}_{e, f \in \mathbb{C}}
\end{gathered}
$$

Let

$$
R_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right), R_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right)
$$

One can check, that $R_{1}^{*}\left(\begin{array}{cc}c & d \\ d & c\end{array}\right) R_{1}, R_{2}^{*}\left(\begin{array}{cc}e & f \\ -f & e\end{array}\right) R_{2}$ are diagonal matrices for any $c, d, e, f \in \mathbb{C}$. So, one has natural isomorphism, which will be used in considerations below.
$\left\{\left(\begin{array}{ll}c & d \\ d & c\end{array}\right)\right\}_{c, d \in \mathbb{C}} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}),\left\{\left(\begin{array}{cc}e & f \\ -f & e\end{array}\right)\right\}_{e, f \in \mathbb{C}} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C})$.
II. Let

$$
\left.\begin{array}{c}
\lambda_{1}:[0,1] \longrightarrow U(2), t \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi t}
\end{array}\right), \\
\lambda_{2}:[0, \\
1
\end{array}\right] \longrightarrow U(2), t \mapsto e^{i \frac{\pi t}{2}}\left(\begin{array}{cc}
\cos \frac{\pi t}{2} & -i \sin \frac{\pi t}{2} \\
-i \sin \frac{\pi t}{2} & \cos \frac{\pi t}{2}
\end{array}\right) .
$$

be homotopies joining the unit matrix E with V and W respectively.
Construct maps $\mu_{i}: X_{1} \longrightarrow U(2)$ by the rule:

$$
\begin{gathered}
(x, y) \mapsto \lambda_{i}\left(\frac{x+1-y}{2(1-y)}\right),(x, y) \neq(0,1), \\
(0,1) \mapsto E .
\end{gathered}
$$

Neither μ_{1} nor μ_{2} is continuous, nevertheless it is easy to check, that $\forall\left(f_{1}, f_{2}\right) \in A_{1},\left(\mu_{1}^{*} f_{1} \mu_{1}, \mu_{2}^{*} f_{2} \mu_{2}\right)$ is a pair of continuous matrix-functions (here $\mu_{i}^{*}(x), x \in X_{1}$, means the adjoint of the matrix $\left.\mu_{i}(x)\right)$. The correspondence:

$$
A_{1} \ni\left(f_{1}, f_{2}\right) \mapsto\left(\mu_{1}^{*} f_{1} \mu_{1}, \mu_{2}^{*} f_{2} \mu_{2}\right)
$$

induces an isomorphism:

$$
\begin{gathered}
A_{1} \simeq A_{2}=\left\{\left(\mu_{1}^{*} f_{1} \mu_{1}, \mu_{2}^{*} f_{2} \mu_{2}\right) \mid\left(f_{1}, f_{2}\right) \in A_{1}\right\}= \\
=\left\{\left(g_{1}, g_{2}\right) \mid g_{1}, g_{2} \in C\left(X_{1} \longrightarrow M_{2}(\mathbb{C})\right), g_{i}(0,1) \in A_{2}^{(i)} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C})\right. \\
g_{1}(t, 1-t)=g_{1}(-t, 1-t), g_{2}(t, 1-t)=g_{2}(-t, 1-t), t \in[0,1] \\
\lambda_{1}((s+1) / 2) g_{1}(s, 0) \lambda_{1}^{*}((s+1) / 2)= \\
\left.=\lambda_{2}((s+1) / 2) g_{2}(s, 0) \lambda_{2}^{*}((s+1) / 2), s \in[-1,1],\right\}
\end{gathered}
$$

III. Further, the boundary conditions

$$
g_{1}(t, 1-t)=g_{1}(-t, 1-t), g_{2}(t, 1-t)=g_{2}(-t, 1-t), \quad t \in[0,1]
$$

for algebra A_{2} allow us to replace X_{1} by X_{1} / \sim where the equivalence relation \sim is defined as follows:

$$
(t, 1-t) \sim(-t, 1-t), t \in[0,1]
$$

and we can consider the algebra A_{2} as an algebra of pairs of functions on the quotient space X_{1} / \sim. Evidently X_{1} / \sim is homeomorphic to the closed unit disk D^{2} in \mathbb{R}^{2}. We denote this disk by X_{2}. In the following, it will be convenient for us to consider X_{2} as the unit disk with center $(0,1)$. In the polar coordinates one has:

$$
X_{2}=\left\{(r \cos \phi, r \sin \phi) \in \mathbb{R}^{2} \mid r \leq 2 \sin \phi, 0 \leq \phi \leq \pi\right\}
$$

Below, for any $x \in X$, by $[x]$ we denote its class in X_{1} / \sim. We can suppose that the homeomorphism $\psi: X_{1} / \sim \longrightarrow X_{2}$ maps $[(0,1)]$ to the center of disk and the image of $[-1,1] \times\{0\}$ is the boundary of D^{2}

$$
\partial X_{2}=\left\{(r \cos \phi, r \sin \phi) \in \mathbb{R}^{2} \mid r=2 \sin \phi, 0 \leq \phi \leq \pi\right\}
$$

To be more precise, one can choose ψ such that:

$$
\begin{aligned}
& {[(0,1)] \mapsto(0,1) \in D^{2}} \\
& {[(s, 0)] \mapsto(2 \sin (\pi(s+1) / 2), \pi(s+1) / 2) \in \partial D^{2}, s \in[-1,1]}
\end{aligned}
$$

The explanations given above show that one can consider the elements of A_{2} as the functions on the quotient space. So one has the isomorphism:

$$
\begin{gathered}
A_{2} \simeq A_{3}=\left\{\left(h_{1}, h_{2}\right)=\left(h_{1}(r, \phi), h_{2}(r, \phi)\right) \mid h_{i} \in C\left(X_{2} \longrightarrow M_{2}(\mathbb{C})\right),\right. \\
h_{i}(1, \pi / 2) \in A_{3}^{(i)} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}), \\
\left.h_{1}(2 \sin \phi, \phi)=\lambda_{1}^{*}\left(\frac{\phi}{\pi}\right) \lambda_{2}\left(\frac{\phi}{\pi}\right) h_{2}(2 \sin \phi, \phi) \lambda_{2}^{*}\left(\frac{\phi}{\pi}\right) \lambda_{1}\left(\frac{\phi}{\pi}\right), \phi \in[0, \pi]\right\} .
\end{gathered}
$$

The boundary conditions in the point $(0,0)$ imply that

$$
h_{1}(0,0)=h_{2}(0,0) \in\left\{\left(\begin{array}{cc}
e & f \\
-f & e
\end{array}\right)\right\}_{e, f \in \mathbb{C}}
$$

IV. To prove an isomorphism $A \simeq B$ we construct a map (noncontinuous!):

$$
\begin{gathered}
\nu=\nu(r, \phi): X_{2} \longrightarrow M_{2}(\mathbb{C}), \\
(r, \phi) \mapsto\left(\begin{array}{cc}
e^{i \frac{r \phi}{4 \sin \phi}} \cos \frac{\phi}{2} & e^{i \frac{r(\phi-\pi)}{4 \sin \phi}} \sin \frac{\phi}{2} \\
-e^{-i \frac{r(\phi-\pi)}{4 \sin \phi}} \sin \frac{\phi}{2} & e^{-i \frac{r \phi}{4 \sin \phi}} \cos \frac{\phi}{2}
\end{array}\right), r \neq 0,(0,0) \mapsto\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{gathered}
$$

Note, that the restriction of ν on the set $\{(2 \sin \phi, \phi) \mid \phi \in[0, \pi]\}=\partial X_{2}$ coincides with

$$
\begin{aligned}
& \lambda_{1}^{*}\left(\frac{\phi}{\pi}\right) \lambda_{2}\left(\frac{\phi}{\pi}\right)=\left(\begin{array}{cc}
e^{i \frac{\phi}{2}} \cos \frac{\phi}{2} & -i e^{i \frac{\phi}{2}} \sin \frac{\phi}{2} \\
-i e^{-i \frac{\phi}{2}} \sin \frac{\phi}{2} & e^{-i \frac{\phi}{2}} \cos \frac{\phi}{2}
\end{array}\right)= \\
&=\left(\begin{array}{cc}
e^{i \frac{\phi}{2}} \cos \frac{\phi}{2} & e^{i \frac{\phi-\pi}{2}} \sin \frac{\phi}{2} \\
-e^{-i \frac{\phi-\pi}{2}} \sin \frac{\phi}{2} & e^{-i \frac{\phi}{2}} \cos \frac{\phi}{2}
\end{array}\right) .
\end{aligned}
$$

One can check that for every pair $\left(h_{1}, h_{2}\right) \in A_{3},\left(h_{1}, \nu h_{2} \nu^{*}\right)$ is also a pair of continuous matrix function, so the correspondence:

$$
A_{3} \ni\left(h_{1}, h_{2}\right) \mapsto\left(h_{1}, \nu h_{2} \nu^{*}\right) .
$$

induces an isomorphism:

$$
\begin{gathered}
A_{3} \simeq A_{4}=\left\{\left(h_{1}, \nu h_{2} \nu^{*}\right) \mid\left(h_{1}, h_{2}\right) \in A_{3}\right\}= \\
=\left\{\left(k_{1}, k_{2}\right) \mid k_{1}, k_{2} \in C\left(X_{2} \longrightarrow M_{2}(\mathbb{C})\right) ; k_{1}(0,0)=\right. \\
=k_{2}(0,0) \in\left\{\left(\begin{array}{cc}
e & f \\
-f & e
\end{array}\right)\right\}_{e, f \in \mathbb{C}}, k_{i}(1, \pi / 2) \in A_{4}^{(i)} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}) ; \\
\left.k_{1}(2 \sin \phi, \phi)=k_{2}(2 \sin \phi, \phi), \phi \in[0, \pi]\right\} .
\end{gathered}
$$

V. The last two conditions for the algebra A_{4} allow us to unite pairs of functions in one. Namely, let $S^{2}=S_{+}^{2} \cup S_{-}^{2}$, where S^{2} is a unit sphere in $\mathbb{R}^{3}, S_{+}^{2}, S_{-}^{2}$ are the upper and the lower closed half-spheres and $\chi_{ \pm}: X_{2} \longrightarrow S_{ \pm}^{2}$ be homeomorphisms such that

$$
\chi_{+}(2 \sin \phi, \phi)=\chi_{-}(2 \sin \phi, \phi), \phi \in[0, \pi)
$$

Denote by $x_{1}, x_{2}, x_{3} \in S^{2}$ the points $\chi_{+}(1, \pi / 2), \chi_{-}(1, \pi / 2), \chi_{+}(0,0)=$ $\chi_{-}(0,0)$. The pair of homeomorphisms $\chi_{ \pm}$defines an isomorphism:

$$
\begin{aligned}
A_{4} \simeq A_{5}=\left\{l \in C \left(S^{2} \longrightarrow\right.\right. & \left.M_{2}(\mathbb{C})\right) \mid \\
& \left.l\left(x_{i}\right) \in A_{5}^{(i)} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}), i=1,2,3\right\}
\end{aligned}
$$

given by the rule:

$$
A_{4} \ni\left(k_{1}(x), k_{2}(x)\right) \mapsto l(x)= \begin{cases}k_{1}\left(\chi_{+}^{-1}(x)\right), & x \in S_{+}^{2} \\ k_{2}\left(\chi_{-}^{-1}(x)\right), & x \in S_{-}^{2}\end{cases}
$$

Evidently $A_{5} \simeq B$. The proof is completed.

Acknowledgements.

Author expresses his gratitude to Prof. Yuriĭ S. Samoĭlenko for the problem stating and permanently attention. I am also indebted to Dr. Daniil P. Proskurin for his critical remarks and helpful discussions.

References

[1] Antonevich A., Krupnik N.: On trivial and non-trivial n-homogeneous C^{*} algebras. Integr.equ.oper.theory 38(2000), 172-189.
[2] Disney S., Raeburn I.:Homogeneous C^{*}-algebras whose spectra are tori. J.Austral.Math.Soc. (Series A)38(1985), 9-39.
[3] Dixmier J.: Les C^{*}-algebres et leurs representations.Paris, Gauthier-Villars Editeur (1969).
[4] Fell J.M.G.:The structure of algebras of operator fields, Acta Math., 106, n. 3-4, (1961), 233-280.
[5] Ostrovskyĭ, V. and Samoĭlenko, Yu.: Introduction to the Theory of Representations of Finitely Presented *-Algebras. I. Representations by bounded operators. The Gordon and Breach Publishing group, London (1999).
[6] Tomiyama J., Takesaki M.: Application of fibre bundles to certain class of C^{*} algbras. Tohoku Math. Journ. 13 n.3, (1961), 498-522,
[7] Vasil'ev N.: C^{*}-algebras with finite dimensional irreducible representations. Uspehi mat. nauk. XXI., n.1, (1966), 136-154.
[8] Vasilevski N., Spitkovski I.: On algebra generated by two projections, Dokl. Akad. Nauk Ukr. SSR, Ser. A 8,(1981),10-13, (Russian).

Contact information

Y. Savchuk Department of Computer Science,
Kyiv Taras Shevchenko University,
64 Volodymyrska st., 01033 Kyiv Ukraine
E-Mail: yurius@univ.kiev.ua

Received by the editors: 20.04.2004
and final form in 01.10.2004.

