Algebra and Discrete Mathematics Number 3. **(2004).** pp. 126 – 134 © Journal "Algebra and Discrete Mathematics"

C^* -algebra generated by four projections with sum equal to 2

RESEARCH ARTICLE

Yuri Savchuk

Communicated by L. Turowska

ABSTRACT. We describe the C^* -algebra generated by four orthogonal projections p_1, p_2, p_3, p_4 , satisfying the linear relation $p_1 + p_2 + p_3 + p_4 = 2I$. The simplest realization by 2×2 -matrixfunctions over the sphere S^2 is given.

Introduction

In the present paper we consider a realization of a certain C^* -algebra A with irreducible representations of dimensions equal to 1 or 2 only, as a C^* -algebra of continuous matrix-functions over S^2 with boundary conditions.

 C^* -algebras with restriction on the dimensions of the irreducible representations are the object of intensive investigations, started from the works of Gelfand-Naimark, Fell, Tomiyama-Takesaki, Vasil'ev (see [4], [6], [7]).

An interesting fact is that the property for a C^* -algebra A to have irreducible representations of dimensions less or equal to n can be formulated in pure algebraic way. Let F_n denote the following polynomial of degree n in n non-commuting variables:

$$F_n(x_1, x_2, \dots, x_n) = \sum_{\sigma \in S_n} (-1)^{p(\sigma)} x_{\sigma(1)} \dots x_{\sigma(n)},$$

²⁰⁰⁰ Mathematics Subject Classification: 46L05, 47L50.

Key words and phrases: matrix-functions, projections, finitely generated C^* -algebras.

where S_n is the symmetric group of degree n, $p(\sigma)$ is the parity of a permutation $\sigma \in S_n$. We say that an algebra A is an algebra with F_n identity if for all $x_1, \ldots, x_n \in A$, we have $F_n(x_1, \ldots, x_n) = 0$. The Amitsur-Levitsky theorem says that the matrix algebra $M_n(\mathbb{C})$ is an algebra with F_{2n} identity. A C^* -algebra A has irreducible representations of dimension less or equal to n iff A satisfies the F_{2n} condition (see [5]).

One of the basic C^* -algebra classes with F_{2n} identity is the class of *n*-homogeneous algebras. Recall, that an algebra is called *n*-homogeneous iff all its irreducible representations are of dimension *n*. Any *n*-homogeneous C^* -algebra can be described in terms of algebraic bundles, see [6] or [7]. It is also convenient to realize these algebras as algebras of continuous matrix-functions. For example, it was proved in [1], that one has exactly *n* pairwise non-isomorphic *n*-homogeneous C^* -algebras having the dual space S^2 (see [1]). We will denote them by $A_{n,k}$, $k = \overline{0, n-1}$. Such algebras can be realized in the following way. Let $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ be the boundary of the unit disk D^2 in the complex plane and consider

$$V_k: S^1 \longrightarrow U(n), z \mapsto diag(z^k, 1, \dots, 1), \ k = \overline{0, n-1}.$$

Then

$$A_{n,k} = \{ f \in C(D^2 \longrightarrow M_2(\mathbb{C})) | f(z) = V_k(z)^* f(1) V_k(z), \ z \in S^1 \}.$$

Evidently, the dual space is homeomorphic to $D^2/S^1 \simeq S^2$ (see [1] for more details).

An analogous realization of n-homogeneous algebra, having the twodimensional torus as the dual space, was presented in [2]. Namely, any such algebra is isomorphic to

$$B_{V,W} = \{g \in C([0,1]^2 \longrightarrow M_n(\mathbb{C})) | g(0,s) = V^* g(1,s)V,$$
$$g(t,0) = W^* g(t,1)W, \ s,t \in [0,1]\},$$

where $V, W \in U(n)$ are some unitary matrices such that VWV^*W^* is a scalar matrix.

Note, that concrete finitely generated F_{2n} -algebras are mostly nonhomogeneous. Indeed, the group C^* -algebra of any non-commutative finite group satisfies the F_{2n} condition for some n, but it is not homogeneous. The group algebra of $G = \mathbb{Z}_2 * \mathbb{Z}_2$ gives an example of F_4 algebra corresponding to infinite discrete group. One can also generate $C^*(\mathbb{Z}_2 * \mathbb{Z}_2)$ by the free pair of projections. Indeed, it is easy to see, that

$$C^*(\mathbb{Z}_2 * \mathbb{Z}_2) = C^*\langle p_1, p_2 | p_k^2 = p_k = p_k^*, \ k = 1, 2 \rangle := \mathcal{P}_2.$$

A realization of \mathcal{P}_2 as algebra of matrix-functions was constructed in [8].

Namely,

$$\mathcal{P}_2 = \{ f \in C([0,1] \longrightarrow M_2(\mathbb{C})) | f(0), f(1) \text{ are diagonal} \}.$$

In this paper we study the C*-algebra A generated by four projections (self-adjoint idempotents) P_1 , P_2 , P_3 , P_4 satisfying the following relation:

$$P_1 + P_2 + P_3 + P_4 = 2I.$$

The algebra A is an enveloping of the *-algebra:

$$\widetilde{A} = \mathbb{C} \langle P_i \mid \sum_{i=1}^{4} P_i = 2I, P_i = P_i^* = P_i^2, i = 1...4 \rangle.$$

In Theorem 1, we realize A as an algebra of continuous 2×2 matrixfunctions with some boundary conditions. In the theorem 2 we give the most simple of possible realizations of A.

1. Preliminaries

In this Section, for convenience of the reader, we recall some information used below.

Definition 1. Let \mathbf{A} be a *-algebra, having at least one representation. Then a pair (\mathcal{A}, ρ) of a C^* -algebra \mathcal{A} and a homomorphism $\rho : \mathbf{A} \longrightarrow \mathcal{A}$ is called an enveloping pair for \mathbf{A} if every irreducible representation $\pi: \mathbf{A} \longrightarrow B(H)$ factors uniquely through the \mathcal{A} , i.e. there is precisely one irreducible representation π_1 of algebra \mathcal{A} satisfying $\pi_1 \circ \rho = \pi$. The algebra \mathcal{A} is called an enveloping for \mathbf{A} .

The following statement is a simple corollary of the noncommutative analogue of the Stone-Weierstrass theorem for C^* -algebras (see Glimm-Stone-Weierstrass theorem in [4] or [7]).

Statement 1. Let Y be a compact Hausdorff space. Let $C \subseteq \mathcal{B}$ be subalgebras of $\mathcal{A} = C(Y \longrightarrow M_n(\mathbb{C}))$. For every pair $x_1, x_2 \in Y$ define $\mathcal{A}(x_1, x_2)$ ($\mathcal{B}(x_1, x_2)$), $\mathcal{C}(x_1, x_2)$ respectively) as:

$$\mathcal{A}(x_1, x_2) := \{ (f(x_1), f(x_2)) \in M_n(\mathbb{C}) \times M_n(\mathbb{C}) | f \in \mathcal{A} \\ (f \in \mathcal{B}, f \in \mathcal{C} \ respectively) \}.$$

Then

$$\mathcal{B} = \mathcal{C} \iff \mathcal{B}(y_1, y_2) = \mathcal{C}(y_1, y_2) \quad \forall y_1, y_2 \in Y.$$

In the next section we will also need a classification of all irreducible representation of A (see [5] for more details). Namely, irreducible representations are either 1-dimensional or 2-dimensional. The images of generators of A in two-dimensional representations have the following form :

$$P_{1}(a,b,c) = \frac{1}{2} \begin{pmatrix} 1+a & -b-ic \\ -b+ic & 1-a \end{pmatrix}, P_{2}(a,b,c) = \frac{1}{2} \begin{pmatrix} 1-a & b-ic \\ b+ic & 1+a \end{pmatrix},$$
$$P_{3}(a,b,c) = \frac{1}{2} \begin{pmatrix} 1-a & -b+ic \\ -b-ic & 1+a \end{pmatrix}, P_{4}(a,b,c) = \frac{1}{2} \begin{pmatrix} 1+a & b+ic \\ b-ic & 1-a \end{pmatrix}.$$

where $a^2 + b^2 + c^2 = 1$ and the space of parameters (a, b, c) corresponding to irreducible pairwise non-equivalent 2-dimensional representations is (a part of the unit sphere in \mathbb{R}^3):

$$\begin{split} P = \{(a,b,c) | a > 0, b > 0, c \in \mathbb{R}\} \bigcup \{(a,b,c) | a = 0, b > 0, c > 0\} \bigcup \\ \bigcup \{(a,b,c) | a > 0, b = 0, c > 0\}. \end{split}$$

Note that when $(a, b, c) \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$, the formulas for P_k give reducible representations of \widetilde{A} , moreover, any one-dimensional representation of A can be obtained by decomposition of some of these reducible ones on irreducible components.

We will denote by \overline{P} the closure of P in \mathbb{R}^3 . Evidently

$$\overline{P} = \{(a, b, c) | a^2 + b^2 + c^2 = 1, \ a \ge 0, b \ge 0\}.$$

The structure of enveloping C^* -algebra 2.

In this section we give a description of the enveloping C^* -algebra A of A. Theorem 1 realizes A by matrix-functions, and Theorem 2 gives the simplest of all descriptions for A.

Theorem 1. Let

$$X = \{(x,y) | (x,y) \in \mathbb{R}^2, |x| + |y| \le 1\}, V = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, W = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$
$$A_0 = \{f \in C(X \longrightarrow M_2(\mathbb{C})) | f(t,1-t) = Vf(-t,1-t)V, f(t,t-1) = Wf(-t,t-1)W, t \in [0,1]\},$$
when $A \simeq A_0$.

Proof. Consider the functions $P_i = P_i(a, b, c)$, $i = \overline{1, 4}$ naturally corresponding to generators P_i defined on \overline{P} . Let $\widehat{A} \subseteq C(\overline{P} \longrightarrow M_2(\mathbb{C}))$ be

the C^* -algebra generated by P_i . It is easy to check, that \widehat{A} is an enveloping C^* -algebra of \widetilde{A} , i.e. A. Indeed, we have homomorphism of \widetilde{A} into \widehat{A} , which satisfies the universal property, so \widehat{A} is enveloping algebra by Definition 1. We will show, that \widehat{A} coincides with

$$\overline{A} = \{ f \in C(\overline{P} \to M_2(\mathbb{C})) | Vf(s, 0, t)V = f(s, 0, -t), \\ Wf(0, s, t)W = f(0, s, -t), s^2 + t^2 = 1 \}.$$

To do so we apply Statement 1.

Let us check that $\widehat{A} \subseteq \overline{A}$. Indeed, it is easy to check, that P_i satisfy the boundary conditions from the definition of \overline{A} , so we have $P_i \in \overline{A}$.

The fact, that P is space of pairwise non-equivalent irreducible representations insures that:

$$\widehat{A}(x_1, x_2) = \overline{A}(x_1, x_2) = M_2(\mathbb{C}) \times M_2(\mathbb{C}), \ \forall x_1, \ x_2 \in P,$$

and automatically:

$$\widehat{A}(x_1, x_2) = \overline{A}(x_1, x_2) \subset M_2(\mathbb{C}) \times M_2(\mathbb{C}), \ \forall x_1, \ x_2 \in \overline{P}.$$

So, by Statement 1 we have $\widehat{A} = \overline{A}$.

Choose a homeomorphism between \overline{P} and X which maps the points $(1,0,0), (0,0,\pm 1), (0,1,0) \in \overline{P}$ to the points $(0,1), (\pm 1,0), (0,-1) \in X$, correspondingly. This homeomorphism induces the isomorphism between \overline{A} and A_0 .

Remark. It is easy to show that this theorem implies that the space of primitive ideals of algebra A is the same as for algebra of all continuous matrix-functions on the sphere S^2 having values in diagonal matrix in three fixed points. It turns out that A is isomorphic to such an algebra.

Theorem 2. Let

$$B = \{ f \in C(S^2 \longrightarrow M_2(\mathbb{C})) | f(x_i) \in B_i \simeq M_1(\mathbb{C}) \oplus M_1(\mathbb{C}), \ i = 1, 2, 3 \},\$$

where x_1, x_2, x_3 are fixed points of the sphere S^2 , then $A \simeq B$.

Proof. We will prove this theorem in a few steps, sequently building different realizations of A.

I. It is easy to see, that the algebra A_0 is isomorphic to the algebra A_1 , where

$$A_{1} = \{(f_{1}, f_{2}) | f_{1}, f_{2} \in C(X_{1} \longrightarrow M_{2}(\mathbb{C})), f_{1}(s, 0) = f_{2}(s, 0), s \in [-1, 1], V_{1}(t, 1-t)V = f_{1}(-t, 1-t), W_{2}(t, 1-t)W = f_{2}(-t, 1-t), t \in [0, 1]\}, X_{1} = \{(x, y) | (x, y) \in \mathbb{R}^{2}, |x| + y \leq 1, y \geq 0\}$$

(the norm on the algebra A_1 is natural: $\parallel (f_1, f_2) \parallel = max(\parallel f_1 \parallel, \parallel f_2 \parallel)).$

The boundary conditions for A_1 imply that:

$$f_1(0,1) \in \left\{ \begin{pmatrix} a & 0\\ 0 & b \end{pmatrix} \right\}_{a,b \in \mathbb{C}}, f_2(0,1) \in \left\{ \begin{pmatrix} c & d\\ d & c \end{pmatrix} \right\}_{c,d \in \mathbb{C}},$$

$$f_1(1,0) = f_2(1,0) = V f_1(-1,0) V = W f_2(-1,0) W \in \left\{ \begin{pmatrix} e & f\\ -f & e \end{pmatrix} \right\}_{e,f \in \mathbb{C}}.$$

Let

$$R_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \ R_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}.$$

One can check, that $R_1^*\begin{pmatrix} c & d \\ d & c \end{pmatrix} R_1$, $R_2^*\begin{pmatrix} e & f \\ -f & e \end{pmatrix} R_2$ are diagonal matrices for any $c, d, e, f \in \mathbb{C}$. So, one has natural isomorphism, which will be used in considerations below.

$$\left\{ \begin{pmatrix} c & d \\ d & c \end{pmatrix} \right\}_{c,d \in \mathbb{C}} \simeq M_1(\mathbb{C}) \oplus M_1(\mathbb{C}), \left\{ \begin{pmatrix} e & f \\ -f & e \end{pmatrix} \right\}_{e,f \in \mathbb{C}} \simeq M_1(\mathbb{C}) \oplus M_1(\mathbb{C}).$$

II. Let

$$\lambda_1 : [0, 1] \longrightarrow U(2), \ t \mapsto \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi t} \end{pmatrix},$$
$$\lambda_2 : [0, 1] \longrightarrow U(2), \ t \mapsto e^{i\frac{\pi t}{2}} \begin{pmatrix} \cos\frac{\pi t}{2} & -i\sin\frac{\pi t}{2} \\ -i\sin\frac{\pi t}{2} & \cos\frac{\pi t}{2} \end{pmatrix}$$

be homotopies joining the unit matrix E with V and W respectively.

Construct maps $\mu_i: X_1 \longrightarrow U(2)$ by the rule:

$$(x,y) \mapsto \lambda_i \left(\frac{x+1-y}{2(1-y)} \right), \ (x,y) \neq (0,1),$$

 $(0,1) \mapsto E.$

Neither μ_1 nor μ_2 is continuous, nevertheless it is easy to check, that $\forall (f_1, f_2) \in A_1, (\mu_1^* f_1 \mu_1, \mu_2^* f_2 \mu_2)$ is a pair of continuous matrix-functions (here $\mu_i^*(x), x \in X_1$, means the adjoint of the matrix $\mu_i(x)$). The correspondence:

$$A_1 \ni (f_1, f_2) \mapsto (\mu_1^* f_1 \mu_1, \ \mu_2^* f_2 \mu_2),$$

induces an isomorphism:

$$\begin{aligned} A_1 &\simeq A_2 = \{ (\mu_1^* f_1 \mu_1, \ \mu_2^* f_2 \mu_2) | (f_1, f_2) \in A_1 \} = \\ &= \{ (g_1, g_2) | \ g_1, g_2 \in C(X_1 \longrightarrow M_2(\mathbb{C})), g_i(0, 1) \in A_2^{(i)} \simeq M_1(\mathbb{C}) \oplus M_1(\mathbb{C}), \\ g_1(t, 1-t) &= g_1(-t, 1-t), g_2(t, 1-t) = g_2(-t, 1-t), t \in [0, 1], \\ \lambda_1((s+1)/2)g_1(s, 0)\lambda_1^*((s+1)/2) = \\ &= \lambda_2((s+1)/2)g_2(s, 0)\lambda_2^*((s+1)/2), s \in [-1, 1], \}. \end{aligned}$$

III. Further, the boundary conditions

$$g_1(t, 1-t) = g_1(-t, 1-t), g_2(t, 1-t) = g_2(-t, 1-t), \quad t \in [0, 1]$$

for algebra A_2 allow us to replace X_1 by X_1/\sim where the equivalence relation \sim is defined as follows:

$$(t, 1-t) \sim (-t, 1-t), t \in [0, 1],$$

and we can consider the algebra A_2 as an algebra of pairs of functions on the quotient space X_1/\sim . Evidently X_1/\sim is homeomorphic to the closed unit disk D^2 in \mathbb{R}^2 . We denote this disk by X_2 . In the following, it will be convenient for us to consider X_2 as the unit disk with center (0, 1). In the polar coordinates one has:

$$X_2 = \{ (rcos\phi, rsin\phi) \in \mathbb{R}^2 | r \le 2sin\phi, \ 0 \le \phi \le \pi \}.$$

Below, for any $x \in X$, by [x] we denote its class in X_1 / \sim . We can suppose that the homeomorphism $\psi: X_1 / \sim \longrightarrow X_2$ maps [(0,1)] to the center of disk and the image of $[-1,1] \times \{0\}$ is the boundary of D^2

$$\partial X_2 = \{ (rcos\phi, rsin\phi) \in \mathbb{R}^2 | r = 2sin\phi, \ 0 \le \phi \le \pi \}.$$

To be more precise, one can choose ψ such that:

$$\begin{split} & [(0,1)] \mapsto (0,1) \in D^2, \\ & [(s,0)] \mapsto (2\sin(\pi(s+1)/2), \pi(s+1)/2) \in \partial D^2, s \in [-1,1]. \end{split}$$

The explanations given above show that one can consider the elements of A_2 as the functions on the quotient space. So one has the isomorphism:

$$A_{2} \simeq A_{3} = \{(h_{1}, h_{2}) = (h_{1}(r, \phi), h_{2}(r, \phi)) | h_{i} \in C(X_{2} \longrightarrow M_{2}(\mathbb{C})), \\ h_{i}(1, \pi/2) \in A_{3}^{(i)} \simeq M_{1}(\mathbb{C}) \oplus M_{1}(\mathbb{C}), \\ h_{1}(2sin\phi, \phi) = \lambda_{1}^{*}\left(\frac{\phi}{\pi}\right) \lambda_{2}\left(\frac{\phi}{\pi}\right) h_{2}(2sin\phi, \phi) \lambda_{2}^{*}\left(\frac{\phi}{\pi}\right) \lambda_{1}\left(\frac{\phi}{\pi}\right), \phi \in [0, \pi]\}.$$

The boundary conditions in the point (0,0) imply that

$$h_1(0,0) = h_2(0,0) \in \left\{ \begin{pmatrix} e & f \\ -f & e \end{pmatrix} \right\}_{e,f \in \mathbb{C}}$$

IV. To prove an isomorphism $A \simeq B$ we construct a map (non-continuous!):

$$(r,\phi) \mapsto \begin{pmatrix} e^{i\frac{r\phi}{4sin\phi}}\cos\frac{\phi}{2} & e^{i\frac{r(\phi-\pi)}{4sin\phi}}\sin\frac{\phi}{2} \\ -e^{-i\frac{r(\phi-\pi)}{4sin\phi}}\sin\frac{\phi}{2} & e^{-i\frac{r\phi}{4sin\phi}}\cos\frac{\phi}{2} \end{pmatrix}, r \neq 0, (0,0) \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Note, that the restriction of ν on the set $\{(2sin\phi,\phi)|\phi\in[0,\pi]\}=\partial X_2$ coincides with

$$\begin{aligned} \lambda_1^* \left(\frac{\phi}{\pi}\right) \lambda_2 \left(\frac{\phi}{\pi}\right) &= \begin{pmatrix} e^{i\frac{\phi}{2}}\cos\frac{\phi}{2} & -ie^{i\frac{\phi}{2}}\sin\frac{\phi}{2} \\ -ie^{-i\frac{\phi}{2}}\sin\frac{\phi}{2} & e^{-i\frac{\phi}{2}}\cos\frac{\phi}{2} \end{pmatrix} = \\ &= \begin{pmatrix} e^{i\frac{\phi}{2}}\cos\frac{\phi}{2} & e^{i\frac{\phi-\pi}{2}}\sin\frac{\phi}{2} \\ -e^{-i\frac{\phi-\pi}{2}}\sin\frac{\phi}{2} & e^{-i\frac{\phi}{2}}\cos\frac{\phi}{2} \end{pmatrix}. \end{aligned}$$

One can check that for every pair $(h_1, h_2) \in A_3$, $(h_1, \nu h_2 \nu^*)$ is also a pair of continuous matrix function, so the correspondence:

$$A_3 \ni (h_1, h_2) \mapsto (h_1, \nu h_2 \nu^*).$$

induces an isomorphism:

$$\begin{aligned} A_3 \simeq A_4 &= \{ (h_1, \ \nu h_2 \nu^*) | (h_1, h_2) \in A_3 \} = \\ &= \{ (k_1, k_2) | \ k_1, k_2 \in C(X_2 \longrightarrow M_2(\mathbb{C})); k_1(0, 0) = \\ &= k_2(0, 0) \in \left\{ \begin{pmatrix} e & f \\ -f & e \end{pmatrix} \right\}_{e, f \in \mathbb{C}}, k_i(1, \pi/2) \in A_4^{(i)} \simeq M_1(\mathbb{C}) \oplus M_1(\mathbb{C}); \\ &\quad k_1(2sin\phi, \phi) = k_2(2sin\phi, \phi), \ \phi \in [0, \pi] \}. \end{aligned}$$

V. The last two conditions for the algebra A_4 allow us to unite pairs of functions in one. Namely, let $S^2 = S^2_+ \cup S^2_-$, where S^2 is a unit sphere in \mathbb{R}^3 , S^2_+ , S^2_- are the upper and the lower closed half-spheres and $\chi_{\pm}: X_2 \longrightarrow S^2_{\pm}$ be homeomorphisms such that

$$\chi_+(2sin\phi,\phi) = \chi_-(2sin\phi,\phi), \ \phi \in [0,\pi).$$

Denote by $x_1, x_2, x_3 \in S^2$ the points $\chi_+(1, \pi/2), \chi_-(1, \pi/2), \chi_+(0, 0) = \chi_-(0, 0)$. The pair of homeomorphisms χ_{\pm} defines an isomorphism:

$$A_4 \simeq A_5 = \{ l \in C(S^2 \longrightarrow M_2(\mathbb{C})) |$$
$$l(x_i) \in A_5^{(i)} \simeq M_1(\mathbb{C}) \oplus M_1(\mathbb{C}), i = 1, 2, 3 \},$$

given by the rule:

$$A_4 \ni (k_1(x), k_2(x)) \mapsto l(x) = \begin{cases} k_1(\chi_+^{-1}(x)), & x \in S_+^2, \\ k_2(\chi_-^{-1}(x)), & x \in S_-^2. \end{cases}$$

Evidently $A_5 \simeq B$. The proof is completed.

Acknowledgements.

Author expresses his gratitude to Prof. Yuriĭ S. Samoĭlenko for the problem stating and permanently attention. I am also indebted to Dr. Daniil P. Proskurin for his critical remarks and helpful discussions.

References

- Antonevich A., Krupnik N.: On trivial and non-trivial n-homogeneous C^{*}algebras. Integr.equ.oper.theory 38(2000), 172–189.
- [2] Disney S., Raeburn I.:Homogeneous C*-algebras whose spectra are tori. J.Austral.Math.Soc. (Series A)38(1985), 9–39.
- [3] Dixmier J.: Les C*-algebres et leurs representations. Paris, Gauthier-Villars Editeur (1969).
- [4] Fell J.M.G.:The structure of algebras of operator fields, Acta Math., 106, n. 3-4, (1961), 233–280.
- [5] Ostrovskyĭ, V. and Samoĭlenko, Yu.: Introduction to the Theory of Representations of Finitely Presented *-Algebras. I. Representations by bounded operators. *The Gordon and Breach Publishing group, London* (1999).
- [6] Tomiyama J., Takesaki M.: Application of fibre bundles to certain class of C^{*}algbras. Tohoku Math. Journ.13 n.3, (1961), 498–522.
- [7] Vasil'ev N.: C*-algebras with finite dimensional irreducible representations. Uspehi mat. nauk. XXI., n.1, (1966), 136–154.
- [8] Vasilevski N., Spitkovski I.: On algebra generated by two projections, *Dokl. Akad. Nauk Ukr. SSR*, Ser. A 8,(1981),10–13, (Russian).

CONTACT INFORMATION

Y. Savchuk

Department of Computer Science, Kyiv Taras Shevchenko University, 64 Volodymyrska st., 01033 Kyiv Ukraine *E-Mail:* yurius@univ.kiev.ua

Received by the editors: 20.04.2004 and final form in 01.10.2004.