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Abstract. We describe the C∗-algebra generated by four

orthogonal projections p1, p2, p3, p4, satisfying the linear relation

p1 + p2 + p3 + p4 = 2I. The simplest realization by 2 × 2-matrix-

functions over the sphere S2 is given.

Introduction

In the present paper we consider a realization of a certain C∗-algebra
A with irreducible representations of dimensions equal to 1 or 2 only,
as a C∗-algebra of continuous matrix-functions over S2 with boundary
conditions.

C∗-algebras with restriction on the dimensions of the irreducible rep-
resentations are the object of intensive investigations, started from the
works of Gelfand-Naimark, Fell, Tomiyama-Takesaki, Vasil’ev (see [4],
[6], [7]).

An interesting fact is that the property for a C∗-algebra A to have
irreducible representations of dimensions less or equal to n can be formu-
lated in pure algebraic way. Let Fn denote the following polynomial of
degree n in n non-commuting variables:

Fn(x1, x2, . . . , xn) =
∑

σ∈Sn

(−1)p(σ)xσ(1) . . . xσ(n),

2000 Mathematics Subject Classification: 46L05, 47L50.

Key words and phrases: matrix-functions, projections, finitely generated C
∗-

algebras.



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.Y. Savchuk 127

where Sn is the symmetric group of degree n, p(σ) is the parity of a
permutation σ ∈ Sn. We say that an algebra A is an algebra with Fn

identity if for all x1, . . . , xn ∈ A, we have Fn(x1, . . . xn) = 0. The
Amitsur-Levitsky theorem says that the matrix algebra Mn(C) is an al-
gebra with F2n identity. A C∗-algebra A has irreducible representations
of dimension less or equal to n iff A satisfies the F2n condition (see [5]).

One of the basic C∗-algebra classes with F2n identity is the class of n-
homogeneous algebras. Recall, that an algebra is called n-homogeneous
iff all its irreducible representations are of dimension n. Any n-homoge-
neous C∗-algebra can be described in terms of algebraic bundles, see [6] or
[7]. It is also convenient to realize these algebras as algebras of continuous
matrix-functions. For example, it was proved in [1], that one has exactly
n pairwise non-isomorphic n-homogeneous C∗-algebras having the dual
space S2 (see [1]). We will denote them by An,k, k = 0, n− 1. Such
algebras can be realized in the following way. Let S1 = {z ∈ C : |z| = 1}
be the boundary of the unit disk D2 in the complex plane and consider

Vk : S1 −→ U(n), z 7→ diag(zk, 1, . . . , 1), k = 0, n− 1.

Then

An,k = {f ∈ C(D2 −→M2(C))|f(z) = Vk(z)
∗f(1)Vk(z), z ∈ S1}.

Evidently, the dual space is homeomorphic to D2/S1 ' S2 (see [1] for
more details).

An analogous realization of n-homogeneous algebra, having the two-
dimensional torus as the dual space, was presented in [2]. Namely, any
such algebra is isomorphic to

BV,W = {g ∈ C([0, 1]2 −→Mn(C))|g(0, s) = V ∗g(1, s)V,

g(t, 0) = W ∗g(t, 1)W, s, t ∈ [0, 1]},
where V,W ∈ U(n) are some unitary matrices such that VWV ∗W ∗ is a
scalar matrix.

Note, that concrete finitely generated F2n-algebras are mostly non-
homogeneous. Indeed, the group C∗-algebra of any non-commutative
finite group satisfies the F2n condition for some n, but it is not homo-
geneous. The group algebra of G = Z2 ∗ Z2 gives an example of F4

algebra corresponding to infinite discrete group. One can also generate
C∗(Z2 ∗Z2) by the free pair of projections. Indeed, it is easy to see, that

C∗(Z2 ∗ Z2) = C∗〈p1, p2|p2
k = pk = p∗k, k = 1, 2〉 := P2.

A realization of P2 as algebra of matrix-functions was constructed in [8].
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Namely,

P2 = {f ∈ C([0, 1] −→M2(C))|f(0), f(1) are diagonal}.

In this paper we study the C*-algebra A generated by four projections
(self-adjoint idempotents) P1, P2, P3, P4 satisfying the following relation:

P1 + P2 + P3 + P4 = 2I.

The algebra A is an enveloping of the *-algebra:

Ã = C
〈
Pi |

4∑

i=1

Pi = 2I, Pi = P ∗
i = P 2

i , i = 1 . . . 4
〉
.

In Theorem 1, we realize A as an algebra of continuous 2 × 2 matrix-
functions with some boundary conditions. In the theorem 2 we give the
most simple of possible realizations of A.

1. Preliminaries

In this Section, for convenience of the reader, we recall some information
used below.

Definition 1. Let A be a *-algebra, having at least one representation.
Then a pair (A, ρ) of a C∗-algebra A and a homomorphism ρ : A −→
A is called an enveloping pair for A if every irreducible representation
π:A −→ B(H) factors uniquely through the A, i.e. there is precisely
one irreducible representation π1 of algebra A satisfying π1 ◦ ρ = π. The
algebra A is called an enveloping for A.

The following statement is a simple corollary of the noncommutative
analogue of the Stone-Weierstrass theorem for C∗-algebras (see Glimm-
Stone-Weierstrass theorem in [4] or [7]).

Statement 1. Let Y be a compact Hausdorff space. Let C ⊆ B be sub-
algebras of A = C(Y −→ Mn(C)). For every pair x1, x2 ∈ Y define
A(x1, x2) (B(x1, x2), C(x1, x2) respectively) as:

A(x1, x2) := {(f(x1), f(x2)) ∈Mn(C) ×Mn(C)|f ∈ A
(f ∈ B, f ∈ C respectively)}.

Then

B = C ⇐⇒ B(y1, y2) = C(y1, y2) ∀y1, y2 ∈ Y.
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In the next section we will also need a classification of all irreducible
representation of Ã (see [5] for more details). Namely, irreducible rep-
resentations are either 1-dimensional or 2-dimensional. The images of
generators of Ã in two-dimensional representations have the following
form :

P1(a, b, c) =
1

2

(
1 + a −b− ic
−b+ ic 1 − a

)
, P2(a, b, c) =

1

2

(
1 − a b− ic
b+ ic 1 + a

)
,

P3(a, b, c) =
1

2

(
1 − a −b+ ic
−b− ic 1 + a

)
, P4(a, b, c) =

1

2

(
1 + a b+ ic
b− ic 1 − a

)
.

where a2 +b2 +c2 = 1 and the space of parameters (a, b, c) corresponding
to irreducible pairwise non-equivalent 2-dimensional representations is (a
part of the unit sphere in R

3):

P = {(a, b, c)|a > 0, b > 0, c ∈ R}
⋃

{(a, b, c)|a = 0, b > 0, c > 0}
⋃

⋃
{(a, b, c)|a > 0, b = 0, c > 0}.

Note that when (a, b, c) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, the formulas
for Pk give reducible representations of Ã, moreover, any one-dimensional
representation of Ã can be obtained by decomposition of some of these
reducible ones on irreducible components.

We will denote by P the closure of P in R
3. Evidently

P = {(a, b, c)|a2 + b2 + c2 = 1, a ≥ 0, b ≥ 0}.

2. The structure of enveloping C
∗-algebra

In this section we give a description of the enveloping C∗-algebra A of
Ã. Theorem 1 realizes A by matrix-functions, and Theorem 2 gives the
simplest of all descriptions for A.

Theorem 1. Let

X = {(x, y)|(x, y) ∈ R
2, |x| + |y| ≤ 1}, V =

(
1 0
0 −1

)
, W =

(
0 1
1 0

)
,

A0 = {f ∈ C(X −→M2(C))|f(t, 1 − t) = V f(−t, 1 − t)V,

f(t, t− 1) = Wf(−t, t− 1)W, t ∈ [0, 1]},

then A ' A0.

Proof. Consider the functions Pi = Pi(a, b, c), i = 1, 4 naturally corre-
sponding to generators Pi defined on P . Let Â ⊆ C(P −→ M2(C)) be
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the C∗-algebra generated by Pi. It is easy to check, that Â is an envelop-
ing C∗-algebra of Ã, i.e. A. Indeed, we have homomorphism of Ã into
Â, which satisfies the universal property, so Â is enveloping algebra by
Definition 1. We will show, that Â coincides with

A = {f ∈ C(P →M2(C))| V f(s, 0, t)V = f(s, 0,−t),
Wf(0, s, t)W = f(0, s,−t), s2 + t2 = 1}.

To do so we apply Statement 1.
Let us check that Â ⊆ A. Indeed, it is easy to check, that Pi satisfy

the boundary conditions from the definition of A, so we have Pi ∈ A.
The fact, that P is space of pairwise non-equivalent irreducible rep-

resentations insures that:

Â(x1, x2) = A(x1, x2) = M2(C) ×M2(C), ∀x1, x2 ∈ P,

and automatically:

Â(x1, x2) = A(x1, x2) ⊂M2(C) ×M2(C), ∀x1, x2 ∈ P .

So, by Statement 1 we have Â = A.
Choose a homeomorphism between P and X which maps the points

(1, 0, 0), (0, 0,±1), (0, 1, 0) ∈ P to the points (0, 1), (±1, 0), (0,−1) ∈ X,
correspondingly. This homeomorphism induces the isomorphism between
A and A0.

Remark. It is easy to show that this theorem implies that the space
of primitive ideals of algebra A is the same as for algebra of all continuous
matrix-functions on the sphere S2 having values in diagonal matrix in
three fixed points. It turns out that A is isomorphic to such an algebra.

Theorem 2. Let

B = {f ∈ C(S2 −→M2(C))|f(xi) ∈ Bi 'M1(C) ⊕M1(C), i = 1, 2, 3},

where x1, x2, x3 are fixed points of the sphere S2, then A ' B.

Proof. We will prove this theorem in a few steps, sequently building dif-
ferent realizations of A.

I. It is easy to see, that the algebra A0 is isomorphic to the algebra
A1, where

A1 = {(f1, f2)|f1, f2 ∈ C(X1 −→M2(C)), f1(s, 0) = f2(s, 0), s ∈ [−1, 1],

V f1(t, 1 − t)V = f1(−t, 1 − t), Wf2(t, 1 − t)W = f2(−t, 1 − t), t ∈ [0, 1]},
X1 = {(x, y)|(x, y) ∈ R

2, |x| + y ≤ 1, y ≥ 0}
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(the norm on the algebra A1 is natural: ‖ (f1, f2) ‖= max(‖ f1 ‖, ‖ f2 ‖)).
The boundary conditions for A1 imply that:

f1(0, 1) ∈
{(

a 0
0 b

)}

a,b∈C

, f2(0, 1) ∈
{(

c d
d c

)}

c,d∈C

,

f1(1, 0) = f2(1, 0) = V f1(−1, 0)V = Wf2(−1, 0)W ∈
{(

e f
−f e

)}

e,f∈C

.

Let

R1 =
1√
2

(
1 −1
1 1

)
, R2 =

1√
2

(
1 1
i −i

)
.

One can check, that R∗
1

(
c d
d c

)
R1, R

∗
2

(
e f

−f e

)
R2 are diagonal ma-

trices for any c, d, e, f ∈ C. So, one has natural isomorphism, which will
be used in considerations below.
{(

c d
d c

)}

c,d∈C

'M1(C)⊕M1(C),

{(
e f

−f e

)}

e,f∈C

'M1(C)⊕M1(C).

II. Let

λ1 : [0, 1] −→ U(2), t 7→
(

1 0
0 eiπt

)
,

λ2 : [0, 1] −→ U(2), t 7→ ei
πt
2

(
cosπt

2 −isinπt
2

−isinπt
2 cosπt

2

)

be homotopies joining the unit matrix E with V and W respectively.
Construct maps µi : X1 −→ U(2) by the rule:

(x, y) 7→ λi

(
x+ 1 − y

2(1 − y)

)
, (x, y) 6= (0, 1),

(0, 1) 7→ E.

Neither µ1 nor µ2 is continuous, nevertheless it is easy to check, that
∀(f1, f2) ∈ A1, (µ∗1f1µ1, µ

∗
2f2µ2) is a pair of continuous matrix-functions

(here µ∗i (x), x ∈ X1, means the adjoint of the matrix µi(x)). The corre-
spondence:

A1 3 (f1, f2) 7→ (µ∗1f1µ1, µ
∗
2f2µ2),

induces an isomorphism:

A1 ' A2 = {(µ∗1f1µ1, µ
∗
2f2µ2)|(f1, f2) ∈ A1} =

= {(g1, g2)| g1, g2 ∈ C(X1 −→M2(C)), gi(0, 1) ∈ A
(i)
2 'M1(C) ⊕M1(C),

g1(t, 1 − t) = g1(−t, 1 − t), g2(t, 1 − t) = g2(−t, 1 − t), t ∈ [0, 1],

λ1((s+ 1)/2)g1(s, 0)λ∗1((s+ 1)/2) =

= λ2((s+ 1)/2)g2(s, 0)λ∗2((s+ 1)/2), s ∈ [−1, 1], }.
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III. Further, the boundary conditions

g1(t, 1 − t) = g1(−t, 1 − t), g2(t, 1 − t) = g2(−t, 1 − t), t ∈ [0, 1]

for algebra A2 allow us to replace X1 by X1/ ∼ where the equivalence
relation ∼ is defined as follows:

(t, 1 − t) ∼ (−t, 1 − t), t ∈ [0, 1],

and we can consider the algebra A2 as an algebra of pairs of functions
on the quotient space X1/ ∼. Evidently X1/ ∼ is homeomorphic to the
closed unit disk D2 in R

2. We denote this disk by X2. In the following,
it will be convenient for us to consider X2 as the unit disk with center
(0, 1). In the polar coordinates one has:

X2 = {(rcosφ, rsinφ) ∈ R
2| r ≤ 2sinφ, 0 ≤ φ ≤ π}.

Below, for any x ∈ X, by [x] we denote its class in X1/ ∼. We can
suppose that the homeomorphism ψ : X1/ ∼ −→ X2 maps [(0, 1)] to the
center of disk and the image of [−1, 1] × {0} is the boundary of D2

∂X2 = {(rcosφ, rsinφ) ∈ R
2|r = 2sinφ, 0 ≤ φ ≤ π}.

To be more precise, one can choose ψ such that:

[(0, 1)] 7→ (0, 1) ∈ D2,

[(s, 0)] 7→ (2 sin(π(s+ 1)/2), π(s+ 1)/2) ∈ ∂D2, s ∈ [−1, 1].

The explanations given above show that one can consider the elements of
A2 as the functions on the quotient space. So one has the isomorphism:

A2 ' A3 = {(h1, h2) = (h1(r, φ), h2(r, φ))|hi ∈ C(X2 −→M2(C)),

hi(1, π/2) ∈ A
(i)
3 'M1(C) ⊕M1(C),

h1(2sinφ, φ) = λ∗1

(
φ

π

)
λ2

(
φ

π

)
h2(2sinφ, φ)λ∗2

(
φ

π

)
λ1

(
φ

π

)
, φ ∈ [0, π]}.

The boundary conditions in the point (0, 0) imply that

h1(0, 0) = h2(0, 0) ∈
{(

e f
−f e

)}

e,f∈C

.

IV. To prove an isomorphism A ' B we construct a map (non-
continuous!):

ν = ν(r, φ) : X2 −→M2(C),

(r, φ) 7→
(

e
i

rφ

4sinφ cosφ
2 e

i
r(φ−π)
4sinφ sinφ

2

−e−i
r(φ−π)
4sinφ sinφ

2 e
−i

rφ

4sinφ cosφ
2

)
, r 6= 0, (0, 0) 7→

(
1 0
0 1

)
.
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Note, that the restriction of ν on the set {(2sinφ, φ)|φ ∈ [0, π]} = ∂X2

coincides with

λ∗1

(
φ

π

)
λ2

(
φ

π

)
=

(
ei

φ

2 cosφ
2 −iei φ

2 sinφ
2

−ie−i
φ

2 sinφ
2 e−i

φ

2 cosφ
2

)
=

=

(
ei

φ

2 cosφ
2 ei

φ−π

2 sinφ
2

−e−i
φ−π

2 sinφ
2 e−i

φ

2 cosφ
2

)
.

One can check that for every pair (h1, h2) ∈ A3, (h1, νh2ν
∗) is also a pair

of continuous matrix function, so the correspondence:

A3 3 (h1, h2) 7→ (h1, νh2ν
∗).

induces an isomorphism:

A3 ' A4 = {(h1, νh2ν
∗)|(h1, h2) ∈ A3} =

= {(k1, k2)| k1, k2 ∈ C(X2 −→M2(C)); k1(0, 0) =

= k2(0, 0) ∈
{(

e f
−f e

)}

e,f∈C

, ki(1, π/2) ∈ A
(i)
4 'M1(C) ⊕M1(C);

k1(2sinφ, φ) = k2(2sinφ, φ), φ ∈ [0, π]}.

V. The last two conditions for the algebra A4 allow us to unite pairs
of functions in one. Namely, let S2 = S2

+ ∪ S2
−, where S2 is a unit

sphere in R
3, S2

+, S
2
− are the upper and the lower closed half-spheres and

χ± : X2 −→ S2
± be homeomorphisms such that

χ+(2sinφ, φ) = χ−(2sinφ, φ), φ ∈ [0, π).

Denote by x1, x2, x3 ∈ S2 the points χ+(1, π/2), χ−(1, π/2), χ+(0, 0) =
χ−(0, 0). The pair of homeomorphisms χ± defines an isomorphism:

A4 ' A5 = {l ∈ C(S2 −→M2(C))|
l(xi) ∈ A

(i)
5 'M1(C) ⊕M1(C), i = 1, 2, 3},

given by the rule:

A4 3 (k1(x), k2(x)) 7→ l(x) =

{
k1(χ

−1
+ (x)), x ∈ S2

+,

k2(χ
−1
− (x)), x ∈ S2

−.

Evidently A5 ' B. The proof is completed.
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