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Abstract. We consider the dimensions of finite type of rep-
resentations of a partially ordered set, i.e. such that there is only
finitely many isomorphism classes of representations of this dimen-
sion. We give a criterion for a dimension to be of finite type. We
also characterize those dimensions of finite type, for which there is
an indecomposable representation of this dimension, and show that
there can be at most one indecomposable representation of any di-
mension of finite type. Moreover, if such a representation exists,
it only has scalar endomorphisms. These results (Theorem 1.6,
page 25) generalize those of [5, 1, 9].

1. Preliminaries and the Main Theorem

Let (S,≺) be a finite partially ordered set (poset); we denote by ≺ the
strict order and by a 4 b the relation “a ≺ b or a = b”. We usually
suppose that S = { 1, 2, . . . , n } (certainly, not necessary with the natural
order) and denote by Ŝ = S ∪ { 0 }. (Note that we do not treat Ŝ as
a poset.) A representation V of S over a field k is an order preserving
map of S into the set of subspaces of a finite dimensional vector space
V (0) over k. A morphism f : V → V ′ of such representations is a linear
mapping f : V (0) → V ′(0) such that f(V (a)) ⊆ V ′(a) for every a ∈ S.
We denote by repS the category of such representations (supposing the
field k fixed).
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Key words and phrases: Representations of posets, finite type, indecomposable

representations.
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.22 Representations of posets

Recall a relation to a bimodule category [1]. Let Λ = ΛS be the
incidence algebra of the poset S, i.e. the subalgebra of Mat (n, k) with
the basis { eab | a ≺ b in S }. Let also U = US be the right Λ-module
with the basis v1, v2, . . . , vn and the action vaebc = δabvc. We consider
U as k-Λ-bimodule. Then the category El(U) of elements of U (or of
matrices with entries from U) is defined. Its objects are elements from
HomΛ(P, L⊗k U), where L is a finite dimensional vector space and P is a
finitely generated (right) projective Λ-module. A morphism φ : u → u′,
where u : P → L ⊗ U, u′ : P ′ → L′ ⊗ U is, by definition, a pair φ0, φ1,
where φ0 : L → L′ is a linear map, φ1 : P → P ′ is a Λ-homomorphism,
such that u′φ1 = (φ0⊗1)u. Given an element u : P → L⊗U , set V (0) = L
and V (a) = { v ∈ L | v⊗va ∈ Im u }. We get a representation V = ρ(u) ∈
repS. Obviously, if φ = (φ0, φ1) is a morphism u → u′, then φ0 is a
morphism ρ(φ) : ρ(u) → ρ(u′). So ρ is a functor El(U) → repS. It is not
an equivalence, but one can easily control its defects. Namely, let Λa =
eaaΛ; they are all indecomposable projective Λ-modules. Consider the so-
called trivial element Ta, which is the unique element of HomΛ(Λa, 0⊗U)
(it is not zero in the category El(U) ). Later on we shall also use the
trivial representation T0 ∈ Hom(0, k ⊗ U).

Proposition 1.1. 1. The functor ρ is dense (i.e. every object from
repS is isomorphic to ρ(u) for some u) and full, i.e. all induced
maps Hom(u, u′) → Hom(ρ(u), ρ(u′)) are surjective.

2. ρ(φ) = 0 if and only if φ factors through a direct sum
⊕

a∈S
maTa

of trivial elements. In particular, only such direct sums become zero
under the functor ρ.

Proof. 1. Let V ∈ repS, L = V (0). Consider the subspace M =∑
a∈S

V (a)⊗ va ⊆ L⊗U. It is a Λ-submodule. Let P → M be a projec-
tive cover of M . Considered as a homomorphism P → L ⊗ U, it defines
an element u ∈ El(U) and it is obvious that ρ(u) = V . If V ′ = ρ(u′),
where u′ : P ′ → L′ ⊗ U, and f : V (0) = L → V ′(0) = L′ is a morphism
V → V ′, then the inclusions f(V (a)) ⊆ V ′(a) for all a ∈ S imply that
(f ⊗ 1)(Im u) ⊆ Im u′. Hence, there is a homomorphism g : P → P ′ with
(f ⊗ 1)u = u′g, which gives a morphism φ = (f, g) such that ρ(φ) = f .
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2. If ρ(φ) = 0, then φ = (0, φ1), so u′φ1 = 0 and it decomposes as

P
u

−−−−→ L ⊗ U
∥∥∥

y

P −−−−→ 0 ⊗ U

φ1

y
y

P ′ −−−−→
u′

L′ ⊗ U.

Obviously, the second row of this diagram splits in El(U) into a direct
sum of trivial representations.

Note that HomΛ(Λa, U) ' Ueaa = 〈va〉. Therefore, a homomorphism
daΛa → L⊗U can be identified with a matrix M(a) of size d0×da, where
d0 = dimL. Since every projective Λ-module P decomposes uniquely as⊕

a∈S
daΛa, and

HomΛ(Λb, Λa) =

{
k if a ≺ b,

0 otherwise,

it gives the original “matrix” definition of [10]. Namely, u is presented as
a block matrix

M = M(1) M(2) . . . M(n)
,

(1.1)

where M(a) is of size d0×da. For two matrices of this shape, M and M ′,
a morphism Φ is given by a set of matrices {Φ(a) | a ∈ Ŝ } ∪ {Φ(ba) | b ≺
a in S } such that, for every a ∈ S,

Φ(0)M(a) = M ′(a)Φ(a) +
∑

b≺a

M ′(b)Φ(ba). (1.2)

In some respect, this bimodule (or matrix) interpretation has certain
advantage, and we shall permanently use it. Especially, it gives rise to a
quadratic form useful in many questions.

Definition 1.2. 1. The dimension (or vector dimension) of an ele-
ment u ∈ HomΛ(P, L ⊗ U), or of the corresponding representation
of S, is the function d = dimu : Ŝ → N such that d(0) = dimL
and P '

⊕
a∈S

d(a)Λa. We denote by Eld(U) the set of all ele-
ments of dimension d and by repd(S) the set of the corresponding
representations.

If u arises as above from a representation V ∈ repS, then d(0) =
dimV (0) and d(a) = dim

(
V (a)/

∑
b≺a V (b)

)
for a ∈ S.
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2. The support of a dimension d : Ŝ → N is the subset suppd =
{ a ∈ S |d(a) 6= 0 }. The dimension d, as well as the elements from
Eld(S) and the corresponding representations, is called sincere if
suppd = Ŝ.

If a dimension d is not sincere, the representations of this dimension
can (and usually will) be treated as representations of a smaller
poset, namely its support.

3. The quadratic form QS associated to a poset S is, by definition, the
quadratic form

QS(x0, x1, . . . , xn) =
∑

a∈
�

S

x2
a +

∑

a,b∈S

a≺b

xaxb −
∑

a∈S

x0xa.

Note that if d : Ŝ → N, then the negative part of QS(d) is just the
dimension of the vector space Eld(U) = HomΛ(P, L ⊗ U) of all elements
of dimension d, while the positive part is the dimension of the algebraic
group Gd = AutL × Aut P acting on Eld(U) so that its orbits are the
isomorphism classes of elements. From here the following result is evident.

Proposition 1.3. 1. If a dimension d : Ŝ → N is of finite type, i.e.
there are only finitely many isomorphism classes in Eld(U), then
QS(d′) > 0 for each dimension d

′ ≤ d, i.e. such that d
′(a) ≤ d(a)

for all a ∈ Ŝ.

2. Especially, if S is representation finite, i.e. has only finitely many
nonisomorphic indecomposable representations, the quadratic form
QS is weakly positive, i.e. QS(x) > 0 for every nonzero vector x

with non-negative entries.

In [5, 1] the converse was proved, giving a criterion for S to be rep-
resentation finite. We recall this result. A poset S is called primitive if
it is a disjoint unit of several chains such that the elements of different
chains are noncomparable. We denote such a poset by (n1, n2, . . . , ns),
where ni are the lengths of the chains. We also denote by K the poset
{ a1, a2, b1, b2, c1, c2, c3, c4 }, where the order ≺ is defined as follows: a2 ≺
a1, b2 ≺ b1, b2 ≺ a1, c1 ≺ c2 ≺ c3 ≺ c4. The posets (1, 1, 1, 1),
(2, 2, 2), (1, 3, 3), (1, 2, 5) and K are called critical.

Theorem 1.4. 1. The following conditions are equivalent:

(a) S is representation finite.

(b) QS is weakly positive.
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(c) S contains no critical subset.

2. Let S is representation finite, d : Ŝ → N. The following conditions
are equivalent:

(a) There is an indecomposable element u ∈ Eld(U).

(b) d is a root of the form QS, i.e. QS(d) = 1.

Moreover, if the latter condition holds, there is a unique indecom-
posable element u ∈ Eld(U), Endu = k and the orbit of u is open
in the space Eld(U) (in the Zariski topology).

We shall generalize this result using the following notions.

Definition 1.5. Let d : Ŝ → N.

1. The dimension d is called critical, if its support C is a critical
subset, QC(d) = 0 and the values {d(a) | a ∈ Ŝ } are coprime
(equivalently, at least one of these values equals 1).

Table 1 below presents all critical dimensions (there are 5 of them,
denoted by ci, 1 ≤ i ≤ 5). In every picture from this table the
bullets show the elements a ∈ C; the numbers nearby are the values
ci(a). The relations a ≺ b are shown by the edges going from a
downstairs to b upstairs. The number in a circle above denotes the
dimension ci(0).

Theorem 1.6 (Main Theorem). 1. The following conditions for a di-
mension d : Ŝ → N are equivalent:

(a) d is a dimension of finite type.

(b) QS(d′) > 0 for every nonzero dimension d
′ ≤ d.

(c) There is no critical dimension c ≤ d.

2. If a dimension d is of finite type, the following conditions are equiv-
alent:

(a) There is an indecomposable element u ∈ Eld(U).

(b) QS(d) = 1.

Moreover, if the latter condition holds, there is a unique indecom-
posable element u ∈ Eld(U), Endu = k, and the orbit of u is open
and dense in Eld(U).
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Table 3.1: Critical dimensions

c1 : c2 : c3 :
/.-,()*+2

1• 1• 1• 1•

/.-,()*+3

1• 1• 1•

1• 1• 1•

/.-,()*+4

1• 1•

1• 1•

2• 1• 1•

c4 : c5 :
/.-,()*+6

1•

1•

1•

2• 1•

3• 2• 1•

/.-,()*+5

1•

1•

1• 2• 1•

2• 1•

JJJJJ
1•

Note that all claims about indecomposable elements of Eld(U) ob-
viously remain valid for indecomposable representations from repd(S),
with the exception of trivial dimensions, which are nonzero on a unique
element a ∈ S.

For primitive posets this theorem was deduced in [9] from the results of
Kac [4] about the representations of quivers. Unfortunately, this approach
cannot be applied in general case. That is why we have to return to the
original technique of derivations (or differentiation) from [10]. It will be
considered in the next section.

2. Derivations and integration

For calculation of representations there is an effective algorithm of deriva-
tions (or differentiation) elaborated in [10, 6]. We recall it; moreover, we
show that it can be considered as an equivalence of certain categories. For
every element a ∈ S, denote by ∆(a) = { b ∈ S | b 4 a } the lower cone of
a, ∆′(a) = ∆(a)\{ a }, and Θ(a) the set of elements noncomparable with
a. Let also w(S) be the width of S, i.e. the maximal number of pairwise
noncomparable elements from S.

Definition 2.1. Suppose that a is a maximal element of S. Let Π(a) be
the set of all pairs { b, c } such that b, c ∈ Θ(a) and are noncomparable in
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S. Set S̃
a = S ∪ Π(a) and define a partial order 4 on S̃

a setting B 4 C
in S̃

a if and only if for each element b ∈ B there is an element c ∈ C
such that b 4 c in S (we identify elements of S with one-element sets).
We also set S

a = S̃
a \ { a } and call the poset S

a the derivative of S with
respect to a.

For instance, b 4 { c, d } means that either b 4 c or b 4 d; { b, c } 4 d
means that both b 4 d and c 4 d, etc.

We fix, for every pair p ∈ Π(a), one element p′ ∈ p, and denote by p′′

the other element of p.

We also use the following notations.

• For every element a ∈ S denote by Ea the representation of S such
that Ea(0) = k, Ea(b) = k if a 4 b and Ea(b) = 0 otherwise.

• For every pair of noncomparable elements p = { a, b } of S, denote
by Ep the representation of S such that Ep(0) = k, Ep(c) = k if
a 4 c or b 4 c and Ep(c) = 0 otherwise.

We use the same notations for the objects of El(U) corresponding to
these representations. In the matrix form, Ea(a) = (1), Ea(b) = ∅ if
b 6= a; Ep(a) = Ep(b) = (1), Ep(c) = ∅ if c 6= a, c 6= b.

If V is a representation of S, define the derived representation DaV
of S

a as follows:

• DaV (0) = V (a);

• DaV (b) = V (b) ∩ V (a) for b ∈ S \ { a };

• DaV (p) = (V (p′) + V (p′′)) ∩ V (a) for p ∈ Π(a).

Obviously, every morphism f : V → W induces a morphism Daf :
DaV → DaW . So we obtain a functor Da : rep(S) → rep(Sa).

On the contrary, let V be a representation of S
a. For every p ∈ Π(a),

let Ṽ (p) = V (p)/(V (p′) + V (p′′)) and πp : V (p) → Ṽ (p) be the natural

surjection. We can choose sections ιp : Ṽ (p) → V (p) such that πpιp = Id

and ιp|V (q) = ιq if p, q ∈ Π(a), q ≺ p. Set Ṽ (0) =
⊕

p∈Π(a) Ṽ (p) and

define, for b ∈ Θ(a), a map ι̃b : Ṽ (0) → V (0) ⊕ Ṽ (0) by the rule

ι̃b(v) =





(0, 0) if b /∈ p,

(0, v) if b = p′,

(ιp(v), v) if b = p′′,

where v ∈ Ṽ (p). We construct the integrated representation
∫ ι

a
V as

follows:



Jo
u
rn

al
 A

lg
eb

ra
 D

is
cr

et
e 

M
at

h
.28 Representations of posets

•
∫ ι

a
V (0) = V (0) ⊕ Ṽ (0);

•
∫ ι

a
V (a) = V (0);

•
∫ ι

a
V (b) = V (b) for b ∈ ∆(a);

•
∫ ι

a
V (b) = V (b) + Im ι̃b for b ∈ Θ(a).

We have included the choice ι = { ιp } of sections ιp : Ṽ (p) → V (p) into
this notation. Nevertheless, if ι′ = { ι′p } is another choice of such sections,
Im(ι′p − ιp) ∈ V (p′) + V (p′′) for each p ∈ Π(a). Thus we can find maps

δp : Ṽ (p) → V (p′) such that Im(ι′p − ιp − δp) ⊆ V (p′′). Moreover, we can
again suppose that δp|�V (q)

= δq if p, q ∈ Π(a), q ≺ p. It defines a map

δ : Ṽ (0) → V (0) such that the map V (0) ⊕ Ṽ (0) → V (0) ⊕ Ṽ (0) given
by the matrix (

Id δ
0 Id

)

is indeed a morphism (hence, an isomorphism)
∫ ι

a
V →

∫ ι′

a
V . So we

can use the notation
∫
a
V without mentioning ι. Note that we have only

defined the operation
∫
a

on representations, not on their morphisms, so
it is not a functor. Nevertheless, Proposition 2.2 below shows that it can
be considered as a functor from repS

a to a factorcategory of repS.
This integration is easier in the matrix language. Namely, let a set of

matrices {M(x) |x ∈ S
a } define an object u ∈ El(USa), like in (1.1), and

d = dimu. Let also ∆(a) = { a = a1, a2, . . . , ak }. We choose a matrix
M(a) with d(0) rows so that its columns are linear independent and

rank M(a1) M(a2) . . . M(an) = d(0).

We denote by d(a) the number of columns of M(a). Define d
∗ : Ŝ → N

as follows:

d
∗(b) =





d(0) +
∑

p∈Π(a) d(p) if b = 0,

d(b) if b ∈ ∆(a),

d(b) +
∑

p∈Π(a)
b∈p

d(p) if b ∈ Θ(a).

The integrated element
∫
a
u is of dimension d

∗ and is given by the set of
matrices M∗(b) defined as follows. We consider the element z ∈ El(U),
which is the direct sum

z =
(⊕

b∈Θ(a)

d(b)Tb

)
⊕

(⊕

p∈Π(a)

Ep

)
.
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In the block matrix Z defining this element only blocks Z(b), b ∈ Θ(a),
are nonzero; let

Z(b) = Zb(0) Zb(p1) . . . Zb(ps)
,

Y (b) = M(b) Mb(p1) . . . Mb(ps)
,

where

• p1, p2, . . . , ps are all pairs from Π(a) containing b; Zb(pi) denotes
the part of Z(b) corresponding to the direct summand Epi

of Z,
and Zb(0) is the part of Z(b) corresponding to the direct summand
Tb (it is the zero matrix with d(b) columns);

• the vertical stripes of the matrix Y (b) are of the same size as the
corresponding stripes of the matrix Z(b);

• Mb(p) = M(p) if b = p′′, and Mb(p) = 0 if b = p′.

We also set Z(b) = 0 if b ∈ ∆(a). Then

M∗(b) =
Y (b)

Z(b) .

Since w(Θ(a)) ≤ 2, every object of repS with support in Θ(a) is a
direct sum of the trivial representation T0, the representations Eb and
Ep. Set O(a) = {T0, Eb, Ep | b ∈ Θ(a), p ∈ Π(a) }. They are all indecom-
posable representations V such that DaV = 0. Straightforward matrix
calculations immediately imply the following result (cf. also [6] and, for
paragraphs 3 and 4, the proof of Lemma 4.4 below).

Proposition 2.2. 1. If V ∈ rep(Sa), then Da

∫
a
V ' V .

2. If V ∈ rep(S), then
∫
a
DaV ' V if and only if V has no direct

summands from O(a).

3. For every morphism φ : V → W of representations of S
a, there is

a morphism f :
∫
a
V →

∫
a
W such that φ = Daf . If, moreover, φ

is an isomorphism, so is f .

4. The operations Da and
∫
a

induce an equivalence between the cate-
gories repS/Ja and repS

a, where Ja is the ideal generated by the
identity morphisms of all representations from O(a).
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We shall call a dimension d
′ : Ŝ

a → N subordinate to a dimension
d : Ŝ → N if dim

∫
a
V = d for some representation V ∈ repd′(Sa).

Obviously, for every dimension d : Ŝ → N there is only a finite set
of subordinate dimensions d

′ : Ŝ
a → N. Proposition 2.2 immediately

implies the following corollary.

Corollary 2.3. If a dimension d
′ is subordinate to a dimension d, which

is of finite type, then d
′ is of finite type as well.

3. Dimensions of finite type

In this section we shall prove paragraph 1 of the Main Theorem 1.6.
In fact, 1(a)⇒1(b) is the claim of Proposition 1.3.1, and 1(b)⇒1(c) is
obvious. So we only have to prove that 1(c)⇒1(a).

Definition 3.1. We call a representation V quite sincere if it is inde-
composable and the following conditions hold:

• V (a) 6= V (0) for every a ∈ S.

• V (a) 6=
∑

b≺a V (b) for every a ∈ S.

In particular, since V is indecomposable,
∑

a∈S
V (a) = V (0). If there

is a quite sincere representation of dimension d, we call this dimension
quite sincere as well.

Obvious necessary conditions for a dimension d to be quite sincere
are:

• d(a) 6= 0 for every a ∈ S;

•
∑k

i=1 d(ai) < d(0) for every chain a1 ≺ a2 ≺ . . . ≺ ak from S.

Note also that if there is a quite sincere dimension of representations of
S, S must have at least 2 maximal elements.

We shall deduce the implication 1(c)⇒1(a) from the following result.

Lemma 3.2. Suppose that w(S) ≤ 3 and a quite sincere dimension d

satisfies condition 1(c) of Theorem 1.6. There is a maximal element
a ∈ S such that every dimension d

′ of representations of the derived
poset S

a, which is subordinate to d, satisfies this condition too.

Proof. Note, first of all, that d
′|S\{ a } ≤ d|S\{ a }. Hence, if d

′ ≥ c for
a critical dimension c, the support of this c must contain at least one
element from Π(a): otherwise also d ≥ c. If there is a maximal ele-
ment a ∈ S such that w(Θ(a)) ≤ 1, then S

a = S \ { a }, so there is
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nothing to prove. Hence, we may suppose that w(Θ(a)) = 2 for every
maximal element a ∈ S. We show that then S must have 3 maximal
elements. Indeed, suppose that S has only 2 maximal elements, a and
b. If both a and b can be included in non-comparable triples, respec-
tively, { a, a′, a′′ } and { b, b′, b′′ }, the quadruple { a′, a′′, b′, b′′ } is non-
comparable too, which contradicts the condition. So, for one of these
elements, say for a, w(Θ(a)) = 1, the case already excluded.

We also recall the following (rather easy) lemma from [10].

Lemma 3.3 ([10]). Suppose that S = S1 t S2 t S3, where S3 is a chain
(maybe empty), b ≺ a for every a ∈ S1, b ∈ S2 and S1 6= ∅, S2 6= ∅. If
V ∈ repS is indecomposable and d = dimV , then either d|S1

= 0 or
d|S2

= 0. Especially, if neither S1 nor S2 are empty, S has no sincere
indecomposable representations.

In this case the poset S is called semidecomposable. Thus in what
follows we may suppose that S is not semidecomposable.

Let the maximal elements of S be a, b, c. Using the Dilworth theorem
[11, Theorem 10.2.3], we consider S as a union of three chains

A = { a = a1 � a2 � · · · � ar },

B = { b = b1 � b2 � · · · � bs },

C = { c = c1 � c2 � · · · � ct },

Since d is quite sincere, S contains no primitive subset of type (2, 2, 2).
Consider the top of S, i.e. the maximal primitive subset T ⊆ S con-
taining { a, b, c }. Then T ' (1, m, n), namely, we may suppose that
T = { a, b1, b2, . . . , bm, c1, c2, . . . , cn } (m ≤ s, m ≤ n ≤ t). If m = 1, the
derived poset S

c only has one new point p = (a, b), such that p � ai and
p � bj for all i, j. So p cannot occur in any critical subset. If m ≥ 3 and
n ≥ 3, then d(a) = 1. Hence, in any subordinate dimension d

′ of the
poset S

c, which consists of S\{ c } and the points pj = (a, bj) (1 ≤ j ≤ m),
only one of the points pj can occur with d

′(pj) = 1, and then d
′(a) = 0.

Thus, replacing this pj by a, we get the same dimension for S, so d
′ ≥ ci

is impossible. Therefore, we may suppose that m = 2, n ≥ 2.

We distinguish the following cases.

Case 1. Either r = 1 or a2 ≺ c.

Then S
c = (S \ { c })∪ { (a, b), (a, b2) } and (a, b) cannot occur in any
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critical subset of S
c:

S
c :

(a, b)

PPPPPP
c2

(a, b2)
PPPPP

b c3

a b2 c4

(a2) (b3) c5

(a2 and b3 are definitely not in the top of S). Set p = (a, b2) and suppose
that d

′ ≥ ci for some i, S0 = supp ci. It is easy to see that S0 6= (2, 2, 2).
If it is (1, 3, 3), it can only be { b, p � a � a2, cj � cj+1 � cj+2 }. Then
{ a � a2, b � b2, cj � cj+1 } is a subset of S of type (2, 2, 2), which is
impossible. Suppose that S0 is (1, 2, 5), so d

′ = c4. It can only occur as
{ b, p � a, cj � cj+1 � · · · � cj+4 } with d

′(p) ≥ 2, d
′(a) ≥ 2, d

′(b) ≥ 3.
Then { a, b � b2, cj � · · · � cj+4 } is also of type (1, 2, 5) and d(a) ≥
4, d(b) ≥ 3, d(b2) ≥ 2, so d ≥ c4, which is impossible. Just in the same
way, if S0 ' K, it can only be { a ≺ p � b2 ≺ b, cj � · · · � cj+3 } with
d
′(a) ≥ 2, d(b) ≥ 2. Then d(a) ≥ 3, d(b2) ≥ 2, hence d ≥ c4 with

supp c4 = { a, b � b2, c � cj � · · · � cj+3 }. It is also impossible, which
accomplishes the consideration of Case 1.

Case 2. a2 ≺ b2.
Then, if b3 ≺ a, S is semidecomposable with S1 = { a, b, b2 }, S2 =

{ ai, bj | i > 1, j > 2 }, both nonempty, so there are no quite sincere
dimensions at all. Hence either s = 2 or b3 ≤ c. In both cases S

c is as in
Case 1 and analogous considerations prove the lemma.

Case 3. a2 ≺ b, a2 ⊀ b2, a2 ⊀ c.
Then the new elements in S

b are pi = (a, ci), (1 ≤ i ≤ n) and p1

cannot occur in any critical subset:

S
b :

p1

ww
ww

ww
ww

w

pn−1

xx
xx

xx
xx

c pn

zz
zz

zz
zz

z

cn−1 a b2

cn a2 (b3)

(a2 is in the top of S
b, while b3 is not). Note that either b3 ≺ a or b3 ≺

cn−1: otherwise S contains a subset (2, 2, 2). It implies that b3 cannot
occur in a critical subset S0 ⊆ S

b containing a new element pi. Hence,
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S0 6= (2, 2, 2) and S0 6= K. Suppose that d
′ ≥ ci with supp ci = S0.

If S0 = (1, 3, 3), then S0 = { b2, cj � cj+1 � cj+2 } ∪ A
′, where A

′ ⊂
A ∪Π(b). Note that A

′ contains at least two elements from Π(b) ∪ { a }.
Then d(b2) = d

′(b2) ≥ 2, d(a) ≥ 2. Hence, d ≥ c5 with supp c5 = { a �
a2 ≺ b � b2, c � cj � cj+1 � cj+2 }, which is impossible. Analogously,
S0 = (1, 2, 5) is impossible too, which accomplishes the proof of the
lemma.

Now the implication 1(c)⇒1(a) of Theorem 1.6 is easy. Namely, let
a dimension d satisfy 1(c). Without loss of geherality, we may suppose d

quite sincere. Then either w(S) ≤ 3 or d(0) = 1. In the latter case d is
obviously of finite type. In the former case choose a maximal element a ∈
S as stated in Lemma 3.2. Every representation V of dimension d without
direct summands from O(a) is isomorphic to

∫
a
W for a representation W

of S
a. The dimension d

′ of W is subordinate to d. Especially it satisfies
1(c) too; moreover, d

′(0) = dimV (a) < d(0). Thus, using induction by
d(0), we get that there are finitely many nonisomorphic representations
of dimension d

′. Since there are finitely many subordinate dimension, we
obtain the same for the dimension d.

4. Indecomposable representations

Now we shall prove paragraph 2 of the Main Theorem 1.6. To do it, we
combine derivations with analogues of some results of [1, 2] about posets
of finite type. Namely, we use induction by |d| =

∑
a∈

�

S
d(a). The case

|d| = 1 is obvious. Thus, from now on, we suppose that d : Ŝ → N

is a dimension of finite type, Theorem 1.6 holds for every dimension of
finite type d

′ of representations of any poset S
′ such that |d′| < |d|, and,

moreover, d is sincere. Let u ∈ Eld(u) be an indecomposable element, V
be the corresponding representation of S and M be the block matrix of
the form (1.1) describing u. Fix an element a ∈ S and denote by Ma the
part of M consisting of the blocks M(b) with b 4 a.

Lemma 4.1. The columns of the matrix Ma are linear independent.

Proof. Obviously, we may suppose that the element a is maximal. Con-
sider the part M of M consisting of all blocks M(b) with b 6= a. It also
describes an object u ∈ El(U) (certainly, non-sincere) and |dimu| < |d|.
Hence, Theorem 1.6 holds for every indecomposable direct summand v
of u. Especially, the orbit of v is open dense in the space of all objects of
the same dimension. Let N be the block matrix describing v, d = dim v,
m = d(0) and n =

∑
b≺a d(b). For every object v′ ∈ El

d
(U), denote by

N ′ the corresponding block matrix and by N ′
a its part consisting of the
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blocks N ′(b) with b ≺ a. If m ≤ n, the objects v′ such that the rows of N ′
a

are linear independent form an open subset in El
d
(U). Hence, v belongs

to this subset, i.e. rkNa = d(0). Then, using automorphisms of u, one
can make zero the part of the matrix M(a) consisting of the rows that
occur in v. Therefore, v is a direct summand of u, which is impossible.
Thus m > n. Then the same argument shows that the columns of v are
linear independent. Since it is so for every direct summand of u, it holds
for u too. If, nevertheless, the columns of Ma are linear dependent, then,
using an automorphism of u, one can make a zero column in M(a), which
is also impossible.

Corollary 4.2. For any a ∈ S, Hom(u, Ta) = 0. Especially, neither
nonzero endomorphism of u factors through a direct sum of trivial ele-
ments; thus Endu = EndV , where V = ρ(u) is the corresponding repre-
sentation of S.

Lemma 4.3. Let S contain a subset

x
??��

y
>>

z
��

t

and V be an indecomposable representation of S such that its dimension
d is of finite type. Then either d(x) = 0 or d(t) = 0.

Proof. We may suppose that w(S) = 3. Again we use the induction
by |d|; for |d| = 1 the claim is trivial. If a ∈ S is maximal and d

′ =
dimDaV , then d

′ is also of finite type and |d′| < |d|. If the element
x is not maximal, choose a such that a � x; then d(x) = d

′(x) and
d(t) = d

′(t), so one of them is 0. Suppose that x is maximal and there
is another maximal element a such that t ≺ b. If p = {x, b } ∈ Π(a),
then y ≺ p and z ≺ p, hence either d

′(t) = d(t) = 0 or d
′(x) = 0 and

d
′(p) = 0 for each pair p = {x, b } ∈ Π(a), wherefrom d(x) = 0. At last,

suppose that t ⊀ a for any maximal a 6= x. If such an element a exists,
then w(Θ(a)) = 2, hence w(Θ(x)) = 1 and S is semidecomposable as
{x } ∪∆′(x)∪Θ(x). Therefore either d(x) = 0 or d|∆′(x) = 0, especially
d(t) = 0.

The following result is crucial for the proof.

Lemma 4.4. A maximal element a ∈ S can be so chosen that End v '
Endu whenever u =

∫
a
v for an object v ∈ El(Ua).
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Proof. By the matrix description of
∫
a
v, the matrix M , up to a permu-

tation of columns, has the form

M =
X0 X 0 Y Z

0 0 I I 0 ,

where I denotes an identity matrix, the part X0 is in the matrix M(a)
and the remaining part of the first row describes the element v. Namely,
the part X is in the matrices M(b), b ≺ a; the part Y corresponds to
the part of M(b), b ∈ Θ(a), arising from the elements p ∈ Π(a) of Sa,
such that b = p′′, while the zero matrix in the first row arises from those
p with b = p′. At last, the part Z arises from the elements b ∈ Θ(a)
considered as the elements of S

a. An endomorphism of u is given by a
pair of matrices

Φ0 =

(
A B
C D

)
, Φ1 =




S0 0 0 0 0
S1 S2 S3 S4 S5

0 0 T11 T12 T13

0 0 T21 T22 T23

0 0 T31 T32 T33




such that Φ0M = MΦ1. Here the diagonal blocks are square, the division
of Φ0 reflects the horizontal division of M , while the division of Φ1 reflects
the vertical division of M . Note that, by construction, the rows of the
matrix (X0 X) are linear independent, and, by Lemma 4.1, its columns
are linear independent too; thus this matrix is invertible. It immediately
gives that C = 0. The other equalities for the elements of Φ0M and MΦ1

are

AX0 = X0S0 + XS1,

AX = XS2,

B = XS3 + Y T21 + ZT31,

B + AY = XS4 + Y T22 + ZT32,

AZ = XS5 + Y T23 + ZT33,

D = T11 + T21 = T12 + T22,

0 = T13 + T23.

Equivalently, the matrices

Ψ0 = A, Ψ1 =




S2 S3 − S4 S5

0 T22 − T21 T23

0 T32 − T31 T33
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define an endomorphism of the representation v (then the matrices S0, S1

can be uniquely calculated from the first equality). We have to show that
if Ψ0 = Ψ1 = 0, also Φ0 = Φ1 = 0. From the proof of Lemma 3.2 we
have got to know that the element a can be so chosen that every pair
from Π(a) is of the sort p = { b, c }, where b is a maximal element. If
{ b, c′ } is another pair, then neither b 4 c′ nor c 4 b. If an element at
some position in the matrix T21 is nonzero, it corresponds either to the
relation c ≺ c′ or to b 4 b; thus the element in the same position of the
matrix T22 is zero. Consequently, the equality T22 − T21 = 0 implies that
T22 = T21 = 0. Lemma 4.3 implies that if t ≺ p, i.e. t ≺ b and t ≺ c,
then either t-part or p-part in the element v is empty. It implies, just as
above, that if S3 − S4 = 0, then S3 = S4 = 0, and if T32 − T31 = 0, then
T31 = T32 = 0. Thus we get the necessary assertion.

Now the induction is obvious (just as in [1, 2]). Namely, if u is an
indecomposable element such that d is of finite type and u /∈ O(a), then
u =

∫
Dau, v = Dau is indecomposable, its dimension d

′ = dim v is
of finite type and |d′| < |d|. Therefore, Endu = End v = k, so the
stabilizer of the element u in the group Gd is 1-dimensional. Recall that
there always is an open subset U ⊆ Eld(U) such that the stabilizers of
the elements of U are of minimal dimension (see e.g. [13]). Thus u ∈ U .
Since any orbit is open in its closure, we get that the orbit of u is open
(hence dense), so its dimension, which is dimGd − 1, equals dim Eld(U).
Therefore QS(d) = dimGd − dim Eld(U) = 1. Moreover, if u′ is another
indecomposable element of the same dimension d, its orbit is also open,
hence coincide with that of u, i.e. u is the unique indecomposable element
of this dimension.

On the other hand, if a dimension is of finite type and QS(d) = 1, the
number of orbits of the group Gd in Eld(U) is finite. Therefore, there is
an open orbit and its dimension equals dim Eld(U). If u is an element of
this orbit, dim Endu = dimGd − dimd(U) = QS(d) = 1, so Endu = k

and u is indecomposable. It accomplishes the proof of the Main Theorem.
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